Abstract
Electroencephalography (EEG) based emotion recognition studies have been conducted in recent years. Most prior researches are based on subject-dependent models since EEG signals have a large variation between individuals. In this paper, we propose a novel EEG-based emotion recognition approach that addresses the challenging issue of the subject-dependency. To solve the problem, we design a multi-task deep neural network, which consists of two objectives. The first one is to classify subject-independent emotional labels, and the second is to make the model cannot distinguish the subject labels. To achieve the latter purpose, we adversarially learn the proposed model, which has three components: 1) Emotion classification module, 2) Subject classification module, 3) Adversarial module. To make the model confuse the subject labels, we apply the randomization function to the subject classification module for adversarial learning. For the experiment, we evaluate the proposed method to classify EEG emotional labels with a leave-one-subject-out scheme on SEED dataset, which has recorded EEG from 15 participants and contains three emotional labels: Positive, negative, and neutral. We compare the proposed method with a single-task deep neural network and multi-task model that classify emotional labels with subject labels. Our experimental results show that the proposed method achieves better results than the others with an average accuracy of 75.31%. Moreover, the standard deviation of our model was 7.33%, which is the lowest with the compared models.
Original language | English |
---|---|
Title of host publication | 8th International Winter Conference on Brain-Computer Interface, BCI 2020 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728147079 |
DOIs | |
Publication status | Published - 2020 Feb |
Event | 8th International Winter Conference on Brain-Computer Interface, BCI 2020 - Gangwon, Korea, Republic of Duration: 2020 Feb 26 → 2020 Feb 28 |
Publication series
Name | 8th International Winter Conference on Brain-Computer Interface, BCI 2020 |
---|
Conference
Conference | 8th International Winter Conference on Brain-Computer Interface, BCI 2020 |
---|---|
Country/Territory | Korea, Republic of |
City | Gangwon |
Period | 20/2/26 → 20/2/28 |
Bibliographical note
Funding Information:This work was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451, Development of BCI based Brain and Cognitive Computing Technology for Recognizing Users Intentions using Deep Learning). *Corresponding author.
Publisher Copyright:
© 2020 IEEE.
All Science Journal Classification (ASJC) codes
- Behavioral Neuroscience
- Cognitive Neuroscience
- Artificial Intelligence
- Human-Computer Interaction