Structural Insights on the New Mechanism of Trehalose Synthesis by Trehalose Synthase TreT from Pyrococcus horikoshii

Eui Jeon Woo, Soo In Ryu, Hyung Nam Song, Tae Yang Jung, Sei Mee Yeon, Hyun Ah Lee, Byoung Chul Park, Kwan Hwa Park, Soo Bok Lee

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Many microorganisms produce trehalose for stability and survival against various environmental stresses. Unlike the widely distributed trehalose-biosynthetic pathway, which utilizes uridine diphosphate glucose and glucose-6-phosphate, the newly identified enzyme trehalose glycosyltransferring synthase (TreT) from hyperthermophilic bacteria and archaea synthesizes an α,α-trehalose from nucleoside diphosphate glucose and glucose. In the present study, we determined the crystal structure of TreT from Pyrococcus horikoshii at 2.3 Å resolution to understand the detailed mechanism of this novel trehalose synthase. The conservation of essential residues in TreT and the high overall structural similarity of the N-terminal domain to that of trehalose phosphate synthase (TPS) imply that the catalytic reaction of TreT for trehalose synthesis would follow a similar mechanism to that of TPS. The acceptor binding site of TreT shows a wide and commodious groove and lacks the long flexible loop that plays a gating role in ligand binding in TPS. The observation of a wide space at the fissure between two domains and the relative shift of the N-domain in one of the crystal forms suggest that an interactive conformational change between two domains would occur, allowing a more compact architecture for catalysis. The structural analysis and biochemical data in this study provide a molecular basis for understanding the synthetic mechanism of trehalose, or the nucleotide sugar in reverse reaction of the TreT, in extremophiles that may have important industrial implications.

Original languageEnglish
Pages (from-to)247-259
Number of pages13
JournalJournal of Molecular Biology
Volume404
Issue number2
DOIs
Publication statusPublished - 2010 Nov 26

Bibliographical note

Funding Information:
We thank the staff at beamline HFMX4A, Pohang Accelerator Laboratory, for data collection and technical assistance. This research was supported by the Marine & Extreme Genome Research Center Program from the Ministry of Land, Transport, and Maritime Affairs, Republic of Korea.

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Structural Biology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Structural Insights on the New Mechanism of Trehalose Synthesis by Trehalose Synthase TreT from Pyrococcus horikoshii'. Together they form a unique fingerprint.

Cite this