Structural, electronic, and transport properties of 1D Ta2Ni3Se8semiconducting material

You Kyoung Chung, Jiho Jeon, Junho Lee, Jae Young Choi, Joonsuk Huh

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Due to their unique properties and potential applications, van der Waals (vdW) crystals with covalently bonded building blocks through vdW interactions have sparked widespread interest. In this article, we introduce a Ta2Ni3Se8 material as an example of an emerging one-dimensional (1D)-vdW-based material. Recently, it was demonstrated that bulk Ta2Ni3Se8 crystals may be effectively exfoliated into a few-chain-scale nanowires using simple mechanical and liquid-phase exfoliation. We performed density-functional theory calculations to get a better understanding of its electrical, magnetic, and transport properties. Theoretically, we expect that this Ta2Ni3Se8 is a semiconducting material, displaying the indirect-to-direct bandgap transition from bulk to single, as well as the band splitting and bandgap opening with the inclusion of Coulomb interaction. Based on deformation potential theory, the carrier mobility of bulk Ta2Ni3Se8 along the axis direction (a-axis) is as high as 264.00 cm2 V-1 s-1 for electrons and 119.62 cm2 V-1 s-1 for holes. The calculated carrier mobility of Ta2Ni3Se8, a 1D single nanowire, is 59.60 cm2 V-1 s-1 for electrons and 42.90 cm2 V-1 s-1 for holes, which is comparable to that of other 1D materials. This confirms that a recently developed field-effect transistor based on Ta2Ni3Se8 nanowires exhibits maximum experimental mobilities of 20.3 and 3.52 cm2 V-1 s-1 for electrons and holes, respectively. On the basis of the obtained intriguing properties of 1D vdW Ta2Ni3Se8 material, it is expected to be a potential candidate for additional 1D materials as channel materials.

Original languageEnglish
Article number073101
JournalApplied Physics Letters
Volume120
Issue number7
DOIs
Publication statusPublished - 2022 Feb 14

Bibliographical note

Publisher Copyright:
© 2022 Author(s).

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Structural, electronic, and transport properties of 1D Ta2Ni3Se8semiconducting material'. Together they form a unique fingerprint.

Cite this