Abstract
As a time domain system identification method, the extended Kalman filter (EKF) has been continuously used for structural damage identification. The performance of the EKF varies greatly depending on the selection of the initial parameters’ values and their combinations. In this paper, to improve the convergence performance of the EKF and to overcome the dependence on the setting parameter values, a hybrid extended Kalman filter (HEKF) for structural damage identification is proposed. As significant properties of the EKF, the structural damage identification, global convergence, stability, and robustness of the HEKF are guaranteed by integrating a genetic algorithm and the EKF. The performance of the HEKF in structural damage identification was investigated in experiments with four 3-story steel frame test models, which were designed for four different damage scenarios.
Original language | English |
---|---|
Pages (from-to) | 391-405 |
Number of pages | 15 |
Journal | Structural Engineering International |
Volume | 31 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Publisher Copyright:© 2020 International Association for Bridge and Structural Engineering (IABSE).
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering
- Building and Construction