Abstract
Stretchable and transparent thin film transistors (TFTs) with intrisically brittle oxide semiconductors are built using a wavy structural configuration that can provide high flexibility and stretchability. After device fabrication procedures including high temperature annealing, the oxide semiconductor-based TFT arrays can be transferred directly to plastic or rubber substrates, without an additional device process, using transfer printing methods. This procedure can avoid some of the thermal degradation problems associated with plastic or rubber substrates by separating them from the annealing procedure needed to improve the device performance. These design and fabrication methods offer the possibility of developing a new format of stretchable electronics
Original language | English |
---|---|
Pages (from-to) | 3577-3582 |
Number of pages | 6 |
Journal | Advanced Functional Materials |
Volume | 20 |
Issue number | 20 |
DOIs | |
Publication status | Published - 2010 Oct 22 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Chemistry(all)
- Materials Science(all)
- Electrochemistry
- Biomaterials