Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics

Woojin Choi, Deokjae Heo, Taeho Kim, Sungwon Jung, Moonhyun Choi, Jiwoong Heo, Jae Sung Kwon, Byeong Su Kim, Wonhwa Lee, Won Gun Koh, Jeong Ho Cho, Sangmin Lee, Jinkee Hong

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

The kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m−3) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m−3) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.

Original languageEnglish
Article number2105420
JournalAdvanced Science
Volume9
Issue number8
DOIs
Publication statusPublished - 2022 Mar 15

Bibliographical note

Publisher Copyright:
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • General Chemical Engineering
  • General Materials Science
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics'. Together they form a unique fingerprint.

Cite this