Abstract
Improvement in the rate capability needs to be addressed for utilization of a Si anode in high-power Li-ion batteries. Regarding the rate capability, its improvement by Si-C nanocomposites seems to be somewhat saturated, thus indicating that the other method should be tried for further enhancement of the rate capability. Here, we introduce Si nanoparticles uniformly coated with nanometer-thick polyacrylonitrile (PAN) with better wettability to liquid electrolytes and minimizing electronic resistance, which might result from a thick PAN coating: the effective contact surface area made by the contact of Si nanoparticles and liquid electrolyte is increased for larger Li-ion current, leading to ultrafast rate capability retaining 62% of the 0.2C rate discharge capacity at 100C. In addition, a strong adhesive property of PAN provides highly mechanically robust Si anodes for multielectrode-stacked flexible lithium-ion batteries, which show no physical damage after 30 000 bending cycles with a bending radius of 25 mm.
Original language | English |
---|---|
Pages (from-to) | 2252-2258 |
Number of pages | 7 |
Journal | ACS Energy Letters |
Volume | 3 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2018 Sept 14 |
Bibliographical note
Funding Information:This work was supported by Samsung Electronics. J. H. Park acknowledges the support by the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (2018M3D1A1058624 (Creative Materials Discovery Program), 2016R1A2A1A05005216, 2017M3A7B4041987).
Publisher Copyright:
© 2018 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Chemistry (miscellaneous)
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Materials Chemistry