Stochastic detection of interior design styles using a deep-learning model for reference images

Jinsung Kim, Jin Kook Lee

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


This paper describes an approach for identifying and appending interior design style information stochastically with reference images and a deep-learning model. In the field of interior design, design style is a useful concept and has played an important role in helping people understand and communicate interior design. Previous studies have focused on how the interior design style categories can be defined. On the other hand, this paper focuses on how stochastically recognizing the design style of given interior design reference images using a deep learning-based data-driven approach. The proposed method can be summarized as follows: (1) data preparation based on a general design style definition, (2) implementing an interior design style recognition model using a pre-trained VGG16 model, (3) training and evaluating the trained model, and (4) demonstration of stochastic detection of interior design styles for reference images. The result shows that the trained model automatically recognizes the design styles of given interior images with probability values. The recognition results, model, and trained image set contribute to facilitating the management and utilization of an interior design references database.

Original languageEnglish
Article number7299
Pages (from-to)1-20
Number of pages20
JournalApplied Sciences (Switzerland)
Issue number20
Publication statusPublished - 2020

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Stochastic detection of interior design styles using a deep-learning model for reference images'. Together they form a unique fingerprint.

Cite this