Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques

Yuying Liu, Jeonghoo Sim, Ruth Habte Hailemariam, Jonghun Lee, Hojung Rho, Kwang Duck Park, Dae Woo Kim, Yun Chul Woo

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

With the increasing global demand for energy, renewable and sustainable biogas has attracted considerable attention. However, the presence of various gases such as methane, carbon dioxide (CO2), nitrogen, and hydrogen sulfide in biogas, and the potential emission of acid gases, which may adversely influence the environment, limits the efficient application of biogas in many fields. Consequently, researchers have focused on the upgrade and purification of biogas to eliminate impurities and obtain high-quality and high-purity biomethane with an increased combustion efficiency. In this context, the removal of CO2 gas, which is the most abundant contaminant in biogas, is of significance. Compared to conventional biogas purification processes such as water scrubbing, chemical absorption, pressure swing adsorption, and cryogenic separation, advanced membrane separation technologies are simpler to implement, easier to scale, and incur lower costs. Notably, hollow fiber membranes enhance the gas separation efficiency and decrease costs because their large specific surface area provides a greater range of gas transport. Several reviews have described biogas upgrading technologies and gas separation membranes composed of different materials. In this review, five commonly used commercial biogas upgrading technologies, as well as biological microalgae-based techniques are compared, the advantages and limitations of polymeric and mixed matrix hollow fiber membranes are highlighted, and methods to fabricate and modify hollow fiber membranes are described. This will provide more ideas and methods for future low-cost, large-scale industrial biogas upgrading using membrane technology.

Original languageEnglish
Article number134959
JournalChemosphere
Volume303
DOIs
Publication statusPublished - 2022 Sept

Bibliographical note

Publisher Copyright:
© 2022 The Authors

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques'. Together they form a unique fingerprint.

Cite this