Statistics and possible sources of aviation turbulence over South Korea

Jung Hoon Kim, Hye Yeong Chun

Research output: Contribution to journalArticlepeer-review

56 Citations (Scopus)


The characteristics of aviation turbulence over South Korea during the recent five years (2003-08, excluding 2005) are investigated using pilot reports (PIREPs) accumulated by the Korea Aviation Meteorological Agency (KAMA). Among the total of 8449 PIREPs, 4607 (54.53%), 1646 (19.48%), 248 (2.94%), 7 (0.08%), and 1941 (22.97%) correspond to the turbulence categories of null, light, moderate, severe, and missing, respectively. In terms of temporal variations, the annual total number of turbulence events increased from 2003 to 2008, and the seasonal frequency is the highest in the spring. With regard to spatial distributions, reported turbulence encounters are dominant along the prevailing flight routes, but are locally higher over the west coast, Jeju Island, and the Sobaek and Taebaek mountains. The turbulence events in these regions vary by season. To examine the regional differences and possible sources of the observed turbulence, lightning flash data, Regional Data Assimilation and Prediction System (RDAPS) analysis data with a 30-km horizontal grid spacing provided by the Korean Meteorological Administration (KMA), and a digital elevation model (DEM) dataset with a 30-s resolution, are additionally used. Convectively induced turbulence (CIT) and clear-air turbulence (CAT) events comprised 11% and 89% of the total 255 moderate or greater (MOG)-level turbulence events, respectively. CAT events are classified as tropopause/jet stream-induced CAT (TJCAT) and mountain-wave-induced CAT (MWCAT) events. The MOG-level TJCAT and MWCAT events are responsible for 41.2% and 19.6% of the total MOG-level turbulence events, respectively. The CIT events in summer and the TRCAT and MWCAT events in spring occur most frequently over the previously mentioned regions of South Korea, associated with specific generation mechanisms.

Original languageEnglish
Pages (from-to)311-324
Number of pages14
JournalJournal of Applied Meteorology and Climatology
Issue number2
Publication statusPublished - 2011 Feb

All Science Journal Classification (ASJC) codes

  • Atmospheric Science


Dive into the research topics of 'Statistics and possible sources of aviation turbulence over South Korea'. Together they form a unique fingerprint.

Cite this