TY - JOUR
T1 - Stage-specific expression patterns of ER stress-related molecules in mice molars
T2 - Implications for tooth development
AU - Aryal, Yam Prasad
AU - Lee, Eui Seon
AU - Kim, Tae Young
AU - Sung, Shijin
AU - Kim, Ji Youn
AU - An, Seo Young
AU - Jung, Jae Kwang
AU - Ha, Jung Hong
AU - Suh, Jo Young
AU - Yamamoto, Hitoshi
AU - Sohn, Wern Joo
AU - Cho, Sung Won
AU - Lee, Youngkyun
AU - An, Chang Hyeon
AU - Kim, Jae Young
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/9
Y1 - 2020/9
N2 - The endoplasmic reticulum (ER) is a site where protein folding and posttranslational modifications occur, but when unfolded or misfolded proteins accumulate in the ER lumen, an unfolded protein response (UPR) occurs. A UPR activates ER-stress signalling genes, including inositol-requiring enzyme-1 (Ire1), activating transcription factor 6 (Atf6), and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (Perk), to maintain homeostasis. The involvement of ER stress molecules in metabolic disease and hard tissue matrix formation has been established; however, an understanding of the role of ER-stress signalling molecules in tooth development is lacking. The aims of this study are to define the stage-specific expression patterns of ER stress-related molecules and to elucidate their putative functions in the organogenesis of teeth. This study leverages knowledge of the tissue morphology and expression patterns of a range of signalling molecules during tooth development. RT-qPCR, in situ hybridization, and immunohistochemistry analyses were performed to determine the stage-specific expression patterns of ER-stress-related signalling molecules at important stages of tooth development. RT-qPCR analyses showed that Atf6 and Perk have similar expression levels during all stages of tooth development; however, the expression levels of Ire1 and its downstream target X-box binding protein (Xbp1) increased significantly from the cap to the secretory stage of tooth development. In situ hybridization results revealed that Atf6 and Xbp1 were expressed in cells that form the enamel knot at cap stage and ameloblasts and odontoblasts at secretory stage in stage-specific patterns. In addition, Atf6, Ire1, and Xbp1 expression exhibited distinct localization patterns in secretory odontoblasts and ameloblasts of PN0 molars. Overall, our results strongly suggest that ER-stress molecules are involved in tooth development in response to protein overload that occurs during signaling modulations from enamel knots at cap stage and extracellular matrix secretion at secretory stage.
AB - The endoplasmic reticulum (ER) is a site where protein folding and posttranslational modifications occur, but when unfolded or misfolded proteins accumulate in the ER lumen, an unfolded protein response (UPR) occurs. A UPR activates ER-stress signalling genes, including inositol-requiring enzyme-1 (Ire1), activating transcription factor 6 (Atf6), and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (Perk), to maintain homeostasis. The involvement of ER stress molecules in metabolic disease and hard tissue matrix formation has been established; however, an understanding of the role of ER-stress signalling molecules in tooth development is lacking. The aims of this study are to define the stage-specific expression patterns of ER stress-related molecules and to elucidate their putative functions in the organogenesis of teeth. This study leverages knowledge of the tissue morphology and expression patterns of a range of signalling molecules during tooth development. RT-qPCR, in situ hybridization, and immunohistochemistry analyses were performed to determine the stage-specific expression patterns of ER-stress-related signalling molecules at important stages of tooth development. RT-qPCR analyses showed that Atf6 and Perk have similar expression levels during all stages of tooth development; however, the expression levels of Ire1 and its downstream target X-box binding protein (Xbp1) increased significantly from the cap to the secretory stage of tooth development. In situ hybridization results revealed that Atf6 and Xbp1 were expressed in cells that form the enamel knot at cap stage and ameloblasts and odontoblasts at secretory stage in stage-specific patterns. In addition, Atf6, Ire1, and Xbp1 expression exhibited distinct localization patterns in secretory odontoblasts and ameloblasts of PN0 molars. Overall, our results strongly suggest that ER-stress molecules are involved in tooth development in response to protein overload that occurs during signaling modulations from enamel knots at cap stage and extracellular matrix secretion at secretory stage.
UR - http://www.scopus.com/inward/record.url?scp=85089150030&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089150030&partnerID=8YFLogxK
U2 - 10.1016/j.gep.2020.119130
DO - 10.1016/j.gep.2020.119130
M3 - Article
C2 - 32758541
AN - SCOPUS:85089150030
SN - 1567-133X
VL - 37
JO - Gene Expression Patterns
JF - Gene Expression Patterns
M1 - 119130
ER -