Stabilized ordered-mesoporous Co3O4 structures using Al pillar for the superior CO hydrogenation activity to hydrocarbons

Chang Il Ahn, Hyun Mo Koo, Jae Min Jo, Hyun Seog Roh, Jong Bae Lee, Yun Jo Lee, Eun Joo Jang, Jong Wook Bae

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)


The metal oxide pillared ordered-mesoporous Co3O4 was investigated to design a stable and superior catalyst for CO hydrogenation into linear hydrocarbons through Fischer-Tropsch Synthesis (FTS) reaction. Enhanced structural stability was observed in ordered-mesoporous Co3O4 even under hydrogen-excess conditions after modification with a metal oxide pillar of Al2O3. The mesoporous Co3O4 was synthesized using a hard template of highly ordered three dimensional mesoporous KIT-6. A small number of metal oxide pillars such as Al2O3, Mn2O4, and SiO2 with 5wt% were subsequently added to the ordered-mesoporous Co3O4 through the incipient wetness impregnation method. The Al2O3-modifed mesoporous Co3O4 catalyst demonstrated superior CO conversion with a stable activity in CO hydrogenation reaction. The enhanced catalytic stability seems to be attributable to the lower mobility of the Al2O3 pillar which formed stronger interactions with the mesoporous Co3O4 inner surfaces. The Al2O3 modification can effectively stabilize ordered-mesoporous structures of Co3O4 by acting as an ordered mesoporous channel reactor and enhancing the transport rate of hydrocarbons formed during FTS reaction.

Original languageEnglish
Pages (from-to)139-149
Number of pages11
JournalApplied Catalysis B: Environmental
Publication statusPublished - 2016 Jan 1

Bibliographical note

Publisher Copyright:
© 2015 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Environmental Science
  • Process Chemistry and Technology


Dive into the research topics of 'Stabilized ordered-mesoporous Co3O4 structures using Al pillar for the superior CO hydrogenation activity to hydrocarbons'. Together they form a unique fingerprint.

Cite this