Spike frequency adaptation in neurons of the central nervous system

Go Eun Ha, Eunji Cheong

Research output: Contribution to journalReview articlepeer-review

53 Citations (Scopus)


Neuronal firing patterns and frequencies determine the nature of encoded information of the neurons. Here we discuss the molecular identity and cellular mechanisms of spike-frequency adaptation in central nervous system (CNS) neurons. Calcium-activated potassium (KCa) channels such as BKCa and SKCa channels have long been known to be important mediators of spike adaptation via generation of a large afterhyperpolarization when neurons are hyper-activated. However, it has been shown that a strong hyperpolarization via these KCa channels would cease action potential generation rather than reducing the frequency of spike generation. In some types of neurons, the strong hyperpolarization is followed by oscillatory activity in these neurons. Recently, spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is shown to be mediated by the Ca2+-activated Cl- channel (CACC), anoctamin-2 (ANO2). Knockdown of ANO2 in these neurons results in significantly reduced spike-frequency adaptation accompanied by increased number of spikes without shifting the firing mode, which suggests that ANO2 mediates a genuine form of spike adaptation, finely tuning the frequency of spikes in these neurons. Based on the finding of a broad expression of this new class of CACC in the brain, it can be proposed that the ANO2-mediated spike-frequency adaptation may be a general mechanism to control information transmission in the CNS neurons.

Original languageEnglish
Pages (from-to)179-185
Number of pages7
JournalExperimental Neurobiology
Issue number4
Publication statusPublished - 2017 Aug 1

Bibliographical note

Funding Information:
This research was supported by the National Research Foundation (NRF-2017R1A2B3011098 and NRF-2017M3C7A1023471) funded by the government of the Republic of Korea (Ministry of Science, ICT & Future Planning, MSIP), International Collaborative R&D Program, funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea), and the Brain Korea 21 (BK21) PLUS program. GEH is fellowship awardee by BK21 PLUS program.

Publisher Copyright:
© Experimental Neurobiology 2017.

All Science Journal Classification (ASJC) codes

  • Clinical Neurology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Spike frequency adaptation in neurons of the central nervous system'. Together they form a unique fingerprint.

Cite this