Abstract
We propose a spatiotemporal attention based deep neural networks for dimensional emotion recognition in facial videos. To learn the spatiotemporal attention that selectively focuses on emotional sailient parts within facial videos, we formulate the spatiotemporal encoder-decoder network using Convolutional LSTM (ConvLSTM) modules, which can be learned implicitly without any pixel-level annotations. By leveraging the spatiotemporal attention, we also formulate the 3D convolutional neural networks (3D-CNNs) to robustly recognize the dimensional emotion in facial videos. The experimental results show that our method can achieve the state-of-the-art results in dimensional emotion recognition with the highest concordance correlation coefficient (CCC) on RECOLA and AV+EC 2017 dataset.
Original language | English |
---|---|
Title of host publication | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1513-1517 |
Number of pages | 5 |
ISBN (Print) | 9781538646588 |
DOIs | |
Publication status | Published - 2018 Sept 10 |
Event | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada Duration: 2018 Apr 15 → 2018 Apr 20 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2018-April |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 |
---|---|
Country/Territory | Canada |
City | Calgary |
Period | 18/4/15 → 18/4/20 |
Bibliographical note
Funding Information:This research was supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT (NRF-2017M3C4A7069370).
Publisher Copyright:
© 2018 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Signal Processing
- Electrical and Electronic Engineering