TY - GEN
T1 - Spatially controlled sonoporation of prostate cancer cells via ultrasound activated microbubble cavitation
AU - Prentice, P. A.
AU - McLean, D.
AU - Cuschieri, A.
AU - Dholakia, K.
AU - Campbell, P. A.
PY - 2005
Y1 - 2005
N2 - Cells that are exposed to ultrasonic (US) energy, in the presence of ultrasound contrast agent microbubbles, may experience enhanced membrane permeability. If the effective dose of US exceeds some threshold, then cell lysis can result (lethal sonoporation), however for lower doses a transient enhancement of membrane permeability occurs (reversible or non lethal sonoporation). The merits of each mode are clear: lethal sonoporation constitutes a significant tumour therapy weapon, whilst its less intrusive counterpart, reversible sonoporation, represents an effective non-invasive targeted drug delivery technique. Until now, the mechanism of the dynamic interaction between microbubbles and cells has remained unknown. Moreover pores, which are the presumed mode of permeabilization have not been observed in a convincing fashion. We will demonstrate, for the first time, how an innovative hybridization of holographic optical trapping technology, together with the application of MHz pulsed US energy and subsequent high resolution observation using atomic force microscopy has been used to elucidate the fundamental mode for membrane permeabilization during sonoporation.
AB - Cells that are exposed to ultrasonic (US) energy, in the presence of ultrasound contrast agent microbubbles, may experience enhanced membrane permeability. If the effective dose of US exceeds some threshold, then cell lysis can result (lethal sonoporation), however for lower doses a transient enhancement of membrane permeability occurs (reversible or non lethal sonoporation). The merits of each mode are clear: lethal sonoporation constitutes a significant tumour therapy weapon, whilst its less intrusive counterpart, reversible sonoporation, represents an effective non-invasive targeted drug delivery technique. Until now, the mechanism of the dynamic interaction between microbubbles and cells has remained unknown. Moreover pores, which are the presumed mode of permeabilization have not been observed in a convincing fashion. We will demonstrate, for the first time, how an innovative hybridization of holographic optical trapping technology, together with the application of MHz pulsed US energy and subsequent high resolution observation using atomic force microscopy has been used to elucidate the fundamental mode for membrane permeabilization during sonoporation.
UR - http://www.scopus.com/inward/record.url?scp=33845339662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845339662&partnerID=8YFLogxK
U2 - 10.1109/MMB.2005.1548412
DO - 10.1109/MMB.2005.1548412
M3 - Conference contribution
AN - SCOPUS:33845339662
SN - 0780387112
SN - 9780780387119
T3 - 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology
SP - 158
EP - 159
BT - 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology
T2 - 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology
Y2 - 12 May 2005 through 15 May 2005
ER -