Solvent and Structural Fluctuations Induced Symmetry-Breaking Charge Transfer in a Porphyrin Triad

Taeyeon Kim, Woojae Kim, Hirotaka Mori, Atsuhiro Osuka, Dongho Kim

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

This study aims to show that the symmetry-breaking charge transfer (SBCT) in a donor-acceptor-donor (DAD) porphyrin triad occurs via solvent and structural fluctuations measured by using femtosecond broadband fluorescence upconversion spectroscopy, which can directly trace the origin of the emitting state by monitoring its emission dipole moment as a function of time. While the emission dipole moment of the triad in the excited state remains nearly unchanged in nonpolar solvents such as cyclohexane and toluene, it is significantly reduced in polar solvents such as benzonitrile due to a change in the emitting state from quadrupolar (the exciton coupled state) to dipolar symmetry (the relaxed S1 state). The latter state is formed by the SBCT process of DAD via a combination of solvent and structural fluctuations.

Original languageEnglish
Pages (from-to)19409-19415
Number of pages7
JournalJournal of Physical Chemistry C
Volume122
Issue number34
DOIs
Publication statusPublished - 2018 Aug 30

Bibliographical note

Publisher Copyright:
Copyright © 2018 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Solvent and Structural Fluctuations Induced Symmetry-Breaking Charge Transfer in a Porphyrin Triad'. Together they form a unique fingerprint.

Cite this