TY - JOUR
T1 - Soluble receptor for advanced glycation end products alleviates nephritis in (NZB/NZW)F1 mice
AU - Lee, Sang Won
AU - Park, Kyu Hyung
AU - Park, Sungha
AU - Kim, Ji Hye
AU - Hong, Sung Yu
AU - Lee, Soo Kon
AU - Choi, Donghoon
AU - Park, Yong Beom
PY - 2013/7
Y1 - 2013/7
N2 - Objective To investigate the efficacy of different doses of the soluble form of the receptor for advanced glycation end products (sRAGE) (conjugated to the Fc portion of immunoglobulin) in the treatment of nephritis in lupus-prone mice, in comparison with the efficacy of combination therapy with mycophenolate mofetil plus prednisolone. Methods Twenty-eight female (NZB/NZW)F1 mice were divided into 5 groups (untreated, sRAGE [dose groups of 0.5, 1, or 2 μg], or mycophenolate mofetil plus prednisolone). Proteinuria and histologic damage were evaluated. Immune complex deposition and the nuclear translocation of NF-κB in the kidney tissue were assessed by immunofluorescence staining. Serum concentrations of anti-double-stranded DNA (anti-dsDNA) and IgG subclasses were also measured. The population of T cells was evaluated using a fluorescence-activated cell sorter, and expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 in the kidney tissue was assessed by immunohistochemical staining. Results In comparison with untreated mice, mice treated with 1 or 2 μg sRAGE showed significantly reduced proteinuria and attenuated histologic renal damage, with efficacy comparable to that of combination therapy. Treatment with 2 μg sRAGE significantly reduced immune complex deposition and decreased the serum concentrations of anti-dsDNA, IgG2a, IgG2b, and IgG3. In addition, sRAGE interrupted the nuclear translocation of NF-κB in the kidney, resulting in reduction in the expression of downstream genes of NF-κB in vivo and in vitro. Furthermore, sRAGE effectively modified T cell populations. Conclusion Treatment with sRAGE significantly improved nephritis in lupus-prone mice, with efficacy comparable to that of standard induction treatment for lupus nephritis. These data suggest that sRAGE has antiinflammatory effects on the pathophysiology of lupus nephritis and could serve as a potent new therapy for this disease.
AB - Objective To investigate the efficacy of different doses of the soluble form of the receptor for advanced glycation end products (sRAGE) (conjugated to the Fc portion of immunoglobulin) in the treatment of nephritis in lupus-prone mice, in comparison with the efficacy of combination therapy with mycophenolate mofetil plus prednisolone. Methods Twenty-eight female (NZB/NZW)F1 mice were divided into 5 groups (untreated, sRAGE [dose groups of 0.5, 1, or 2 μg], or mycophenolate mofetil plus prednisolone). Proteinuria and histologic damage were evaluated. Immune complex deposition and the nuclear translocation of NF-κB in the kidney tissue were assessed by immunofluorescence staining. Serum concentrations of anti-double-stranded DNA (anti-dsDNA) and IgG subclasses were also measured. The population of T cells was evaluated using a fluorescence-activated cell sorter, and expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 in the kidney tissue was assessed by immunohistochemical staining. Results In comparison with untreated mice, mice treated with 1 or 2 μg sRAGE showed significantly reduced proteinuria and attenuated histologic renal damage, with efficacy comparable to that of combination therapy. Treatment with 2 μg sRAGE significantly reduced immune complex deposition and decreased the serum concentrations of anti-dsDNA, IgG2a, IgG2b, and IgG3. In addition, sRAGE interrupted the nuclear translocation of NF-κB in the kidney, resulting in reduction in the expression of downstream genes of NF-κB in vivo and in vitro. Furthermore, sRAGE effectively modified T cell populations. Conclusion Treatment with sRAGE significantly improved nephritis in lupus-prone mice, with efficacy comparable to that of standard induction treatment for lupus nephritis. These data suggest that sRAGE has antiinflammatory effects on the pathophysiology of lupus nephritis and could serve as a potent new therapy for this disease.
UR - http://www.scopus.com/inward/record.url?scp=84879846922&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879846922&partnerID=8YFLogxK
U2 - 10.1002/art.37955
DO - 10.1002/art.37955
M3 - Article
C2 - 23553192
AN - SCOPUS:84879846922
SN - 2326-5191
VL - 65
SP - 1902
EP - 1912
JO - Arthritis and Rheumatology
JF - Arthritis and Rheumatology
IS - 7
ER -