Abstract
We continue the study of generating semantically correct regular expressions from natural language descriptions (NL). The current state-of-the-art model, SemRegex, produces regular expressions from NLs by rewarding the reinforced learning based on the semantic (rather than syntactic) equivalence between two regular expressions. Since the regular expression equivalence problem is PSPACE-complete, we introduce the EQ Reg model for computing the similarity of two regular expressions using deep neural networks. Our EQ Reg model essentially softens the equivalence of two regular expressions when used as a reward function. We then propose a new regex generation model, SoftRegex, using the EQ Reg model, and empirically demonstrate that SoftRegex substantially reduces the training time (by a factor of at least 3.6) and produces state-ofthe-art results on three benchmark datasets.
Original language | English |
---|---|
Title of host publication | EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference |
Publisher | Association for Computational Linguistics |
Pages | 6425-6431 |
Number of pages | 7 |
ISBN (Electronic) | 9781950737901 |
Publication status | Published - 2019 |
Event | 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 - Hong Kong, China Duration: 2019 Nov 3 → 2019 Nov 7 |
Publication series
Name | EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference |
---|
Conference
Conference | 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 |
---|---|
Country/Territory | China |
City | Hong Kong |
Period | 19/11/3 → 19/11/7 |
Bibliographical note
Publisher Copyright:© 2019 Association for Computational Linguistics
All Science Journal Classification (ASJC) codes
- Computational Theory and Mathematics
- Computer Science Applications
- Information Systems