TY - GEN
T1 - SNR efficient 3D reconstruction algorithm for multi-source inverse-geometry CT system
AU - Baek, Jongduk
AU - Pelc, Norbert J.
PY - 2009
Y1 - 2009
N2 - The multi-source Inverse-Geometry CT(MS-IGCT) system uses a 2D array of sources opposite a smaller 2D detector array. One sample system design uses 3 rows of 21 sources each. Because the MS-IGCT system provides sufficient sampling in the axial direction, cone beam artifacts can be reduced. Projection data from the 21 sources at the same zlocation can be rebinned into one cone beam projection, therefore, we can have 3 different cone beam projection data sets after rebinning, and reconstruction can be performed by using the FDK algorithm. However, if FDK is used, each of the three data sets by itself produces different cone beam artifacts. For example, the upper sources can provide artifact free images in the upper reconstruction volume, but cone beam artifacts can be observed in the central and lower reconstruction volume. The central and lower sources also provide artifact free image at different z-locations. We can achieve an artifact free volume by using artifact free images at different z-locations.However, if we could use all the data, the SNR can be improved. In this study, we develop a method to combine reconstructed volumes in Fourier space, and the main goal is to keep the exactness and improve the SNR in the combined image. The method was tested with a simulation of a Defrise phantom and the proposed method did not show cone beam artifacts. A noise simulation was also performed by using ideal bowtie filter so that all projection data had the same noise level. A noise simulation showed that the noise variance was ∼1/3 of that in a single FDK reconstruction.
AB - The multi-source Inverse-Geometry CT(MS-IGCT) system uses a 2D array of sources opposite a smaller 2D detector array. One sample system design uses 3 rows of 21 sources each. Because the MS-IGCT system provides sufficient sampling in the axial direction, cone beam artifacts can be reduced. Projection data from the 21 sources at the same zlocation can be rebinned into one cone beam projection, therefore, we can have 3 different cone beam projection data sets after rebinning, and reconstruction can be performed by using the FDK algorithm. However, if FDK is used, each of the three data sets by itself produces different cone beam artifacts. For example, the upper sources can provide artifact free images in the upper reconstruction volume, but cone beam artifacts can be observed in the central and lower reconstruction volume. The central and lower sources also provide artifact free image at different z-locations. We can achieve an artifact free volume by using artifact free images at different z-locations.However, if we could use all the data, the SNR can be improved. In this study, we develop a method to combine reconstructed volumes in Fourier space, and the main goal is to keep the exactness and improve the SNR in the combined image. The method was tested with a simulation of a Defrise phantom and the proposed method did not show cone beam artifacts. A noise simulation was also performed by using ideal bowtie filter so that all projection data had the same noise level. A noise simulation showed that the noise variance was ∼1/3 of that in a single FDK reconstruction.
UR - http://www.scopus.com/inward/record.url?scp=66849141290&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66849141290&partnerID=8YFLogxK
U2 - 10.1117/12.811221
DO - 10.1117/12.811221
M3 - Conference contribution
AN - SCOPUS:66849141290
SN - 9780819475091
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2009
T2 - Medical Imaging 2009: Physics of Medical Imaging
Y2 - 9 February 2009 through 12 February 2009
ER -