TY - JOUR
T1 - Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel
AU - De La Fuente, Ricardo
AU - Namkung, Wan
AU - Mills, Aaron
AU - Verkman, Alan S.
PY - 2008/3
Y1 - 2008/3
N2 - Calcium-activated chloride channels (CaCCs) are widely expressed in mammalian tissues, including intestinal epithelia, where they facilitate fluid secretion. Potent, selective CaCC inhibitors have not been available. We established a high-throughput screen for identification of inhibitors of a human intestinal CaCC based on inhibition of ATP/carbachol-stimulated iodide influx in HT-29 cells after lentiviral infection with the yellow fluorescent halide-sensing protein YFP-H148Q/I152L. Screening of 50,000 diverse, drug-like compounds yielded six classes of putative CaCC inhibitors, two of which, 3-acyl-2-aminothiophenes and 5-aryl-2-aminothiazoles, inhibited by >95% iodide influx in HT-29 cells in response to multiple calcium-elevating agonists, including thapsigargin, without inhibition of calcium elevation, calcium-calmodulin kinase II activation, or cystic fibrosis transmembrane conductance regulator chloride channels. These compounds also inhibited calcium-dependent chloride secretion in T84 human intestinal epithelial cells. Patch-clamp analysis indicated inhibition of CaCC gating, which, together with the calcium-calmodulin data, suggests that the inhibitors target the CaCC directly. Structure-activity relationships were established from analysis of more than 1800 analogs, with IC50 values of the best analogs down to ∼1 μM. Small-molecule CaCC inhibitors may be useful in pharmacological dissection of CaCC functions and in reducing intestinal fluid losses in CaCC-mediated secretory diarrheas.
AB - Calcium-activated chloride channels (CaCCs) are widely expressed in mammalian tissues, including intestinal epithelia, where they facilitate fluid secretion. Potent, selective CaCC inhibitors have not been available. We established a high-throughput screen for identification of inhibitors of a human intestinal CaCC based on inhibition of ATP/carbachol-stimulated iodide influx in HT-29 cells after lentiviral infection with the yellow fluorescent halide-sensing protein YFP-H148Q/I152L. Screening of 50,000 diverse, drug-like compounds yielded six classes of putative CaCC inhibitors, two of which, 3-acyl-2-aminothiophenes and 5-aryl-2-aminothiazoles, inhibited by >95% iodide influx in HT-29 cells in response to multiple calcium-elevating agonists, including thapsigargin, without inhibition of calcium elevation, calcium-calmodulin kinase II activation, or cystic fibrosis transmembrane conductance regulator chloride channels. These compounds also inhibited calcium-dependent chloride secretion in T84 human intestinal epithelial cells. Patch-clamp analysis indicated inhibition of CaCC gating, which, together with the calcium-calmodulin data, suggests that the inhibitors target the CaCC directly. Structure-activity relationships were established from analysis of more than 1800 analogs, with IC50 values of the best analogs down to ∼1 μM. Small-molecule CaCC inhibitors may be useful in pharmacological dissection of CaCC functions and in reducing intestinal fluid losses in CaCC-mediated secretory diarrheas.
UR - http://www.scopus.com/inward/record.url?scp=40849100330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40849100330&partnerID=8YFLogxK
U2 - 10.1124/mol.107.043208
DO - 10.1124/mol.107.043208
M3 - Article
C2 - 18083779
AN - SCOPUS:40849100330
SN - 0026-895X
VL - 73
SP - 758
EP - 768
JO - Molecular pharmacology
JF - Molecular pharmacology
IS - 3
ER -