TY - JOUR
T1 - Small extracellular vesicles derived from patients with persistent atrial fibrillation exacerbate arrhythmogenesis via miR-30a-5p
AU - Mun, Dasom
AU - Kim, Hyoeun
AU - Kang, Ji Young
AU - Yun, Nuri
AU - Youn, Young Nam
AU - Joung, Boyoung
N1 - Publisher Copyright:
© 2022 The Author(s).
PY - 2022/4
Y1 - 2022/4
N2 - Small extracellular vesicles (sEVs) are nanometer-sized membranous vesicles that contribute to the pathogenesis of atrial fibrillation (AF). Here, we investigated the role of sEVs derived from patients with persistent AF in the pathophysiology of AF. First, we evaluated the pathological effects of sEVs derived from the peripheral blood of patients with persistent AF (AF-sEVs). AF-sEVs treatment reduced cell viability, caused abnormal Ca2+ handling, induced reactive oxygen species (ROS) production and led to increased CaMKII activation of non-paced and paced atrial cardiomyocytes. Next, we analyzed the miRNA profile of AF-sEVs to investigate which components of AF-sEVs promote arrhythmias, and we selected six miRNAs that correlated with CaMKII activation. qRT-PCR experiment identified that miR-30a-5p was significantly down-regulated in AF-sEVs, paced cardiomyocytes, and atrial tissues of patients with persistent AF. CaMKII was predicted by bioinformatics analysis as a miR-30a-5p target gene and validated by a dual luciferase reporter; hence, we evaluated the effects of miR-30a-5p on paced cardiomyocytes and validated miR-30a-5p as a pro-arrhythmic signature of AF-sEVs. Consequently, AF-sEVs-loaded with miR-30a-5p attenuated pacing-induced Ca2+-handling abnormalities, whereas AF-sEVs-loaded with anti-miR-30a-5p reversed the change in paced cardiomyocytes. Taken together, the regulation of CaMKII by miR-30a-5p revealed that miR-30a-5p is a major mediator for AF-sEVs-mediated AF pathogenesis. Accordingly, these findings suggest that sEVs derived from patients with persistent AF exacerbate arrhythmogenesis via miR-30a-5p.
AB - Small extracellular vesicles (sEVs) are nanometer-sized membranous vesicles that contribute to the pathogenesis of atrial fibrillation (AF). Here, we investigated the role of sEVs derived from patients with persistent AF in the pathophysiology of AF. First, we evaluated the pathological effects of sEVs derived from the peripheral blood of patients with persistent AF (AF-sEVs). AF-sEVs treatment reduced cell viability, caused abnormal Ca2+ handling, induced reactive oxygen species (ROS) production and led to increased CaMKII activation of non-paced and paced atrial cardiomyocytes. Next, we analyzed the miRNA profile of AF-sEVs to investigate which components of AF-sEVs promote arrhythmias, and we selected six miRNAs that correlated with CaMKII activation. qRT-PCR experiment identified that miR-30a-5p was significantly down-regulated in AF-sEVs, paced cardiomyocytes, and atrial tissues of patients with persistent AF. CaMKII was predicted by bioinformatics analysis as a miR-30a-5p target gene and validated by a dual luciferase reporter; hence, we evaluated the effects of miR-30a-5p on paced cardiomyocytes and validated miR-30a-5p as a pro-arrhythmic signature of AF-sEVs. Consequently, AF-sEVs-loaded with miR-30a-5p attenuated pacing-induced Ca2+-handling abnormalities, whereas AF-sEVs-loaded with anti-miR-30a-5p reversed the change in paced cardiomyocytes. Taken together, the regulation of CaMKII by miR-30a-5p revealed that miR-30a-5p is a major mediator for AF-sEVs-mediated AF pathogenesis. Accordingly, these findings suggest that sEVs derived from patients with persistent AF exacerbate arrhythmogenesis via miR-30a-5p.
UR - http://www.scopus.com/inward/record.url?scp=85129779119&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129779119&partnerID=8YFLogxK
U2 - 10.1042/CS20211141
DO - 10.1042/CS20211141
M3 - Article
C2 - 35411927
AN - SCOPUS:85129779119
SN - 0143-5221
VL - 136
SP - 621
EP - 637
JO - Clinical Science
JF - Clinical Science
IS - 8
ER -