Size-dependent quantum dynamical influence of metal nanoparticles on surface plasmon resonance

Donghun Kang, Donghyun Kim, Eunji Sim

Research output: Chapter in Book/Report/Conference proceedingConference contribution


We present a description of surface plasmon resonance (SPR) with quantum dynamical simulations based on the path integral method. SPR represents the excitation of surface plasmons (SPs), i.e., collective oscillations of conduction electrons in a metal film, usually created by the plane-polarized visible light. In the classical description, the momentum matching between incident photons and SPs allows the energy of the incident photons to be absorbed into exciting SPs and to form evanescent waves on the metallic thin film surface. While SPR has been understood through classical approaches using Maxwell's equations, extremely small nanoparticles coupled with SPs induces electromagnetic field enhancement often called localized SPR (LSPR) that is classically not well understood. Use of such nanoparticles smaller than a few nanometers in size has made it imperative to consider quantum effects such as quantum size effect. We present a hybridized model to describe SPR/LSPR using quantum states that interact with a dissipative medium according to size-dependent absorption spectra of nanoparticles.

Original languageEnglish
Title of host publicationQuantum Sensing and Nanophotonic Devices IV
Publication statusPublished - 2007
EventQuantum Sensing and Nanophotonic Devices IV - San Jose, CA, United States
Duration: 2007 Jan 222007 Jan 25

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


OtherQuantum Sensing and Nanophotonic Devices IV
Country/TerritoryUnited States
CitySan Jose, CA

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Size-dependent quantum dynamical influence of metal nanoparticles on surface plasmon resonance'. Together they form a unique fingerprint.

Cite this