Single Neuron for Solving XOR like Nonlinear Problems

Ashutosh Mishra, Jaekwang Cha, Shiho Kim

Research output: Contribution to journalArticlepeer-review


XOR is a special nonlinear problem in artificial intelligence (AI) that resembles multiple real-world nonlinear data distributions. A multiplicative neuron model can solve these problems. However, the multiplicative model has the indigenous problem of backpropagation for densely distributed XOR problems and higher dimensional parity problems. To overcome this issue, we have proposed an enhanced translated multiplicative single neuron model. It can provide desired tessellation surface. We have considered an adaptable scaling factor associated with each input in our proposed model. It helps in achieving optimal scaling factor value for higher dimensional input. The efficacy of the proposed model has been tested by randomly increasing input dimensions for XOR-type data distribution. The proposed model has crisply classified even higher dimensional input in their respective class. Also, the computational complexity is the same as that of the previous multiplicative neuron model. It has shown more than an 80% reduction in absolute loss as compared to the previous neuron model in similar experimental conditions. Therefore, it can be considered as a generalized artificial model (single neuron) with the capability of solving XOR-like real problems.

Original languageEnglish
Article number9097868
JournalComputational Intelligence and Neuroscience
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 Ashutosh Mishra et al.

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Neuroscience(all)
  • Mathematics(all)


Dive into the research topics of 'Single Neuron for Solving XOR like Nonlinear Problems'. Together they form a unique fingerprint.

Cite this