TY - GEN
T1 - Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle
AU - Arita, Yoshihiko
AU - Ploschner, Martin
AU - Antkowiak, Maciej
AU - Gunn-Moore, Frank
AU - Dholakia, Kishan
PY - 2014
Y1 - 2014
N2 - Cell selective introduction of therapeutic agents remains a challenging problem. Cavitation-based therapies including ultrasound-induced sonoporation and laser-induced optoporation have led the way for novel approaches to provide the potential of sterility and cell selectivity compared with viral or biochemical counterparts. Acoustic streaming, shockwaves and liquid microjets associated with the cavitation dynamics are implicated in gene and drug delivery. These approaches, however, often lead to non-uniform and sporadic molecular uptake that lacks refined spatial control and suffers from a significant loss of cell viability. Here we demonstrate spatially controlled cavitation instigated by laser-induced breakdown of an optically trapped single gold nanoparticle. Our unique approach employs optical tweezers to trap a single nanoparticle, which when irradiated by a nanosecond laser pulse is subject to laser-induced breakdown followed by cavitation. Using this method for laser-induced cavitation, we can gain additional degrees of freedom for the cavitation process - the particle material, its size, and its position relative to cells or tissues. We show the energy breakdown threshold of gold nanoparticles of l00nm with a single nanosecond laser pulse at 532 nm is three orders of magnitude lower than that for water, which leads to gentle nanocavitation enabling single cell transfection. We optimize the shear stress to the cells from the expanding bubble to be in the range of 1-10 kPa for transfection by precisely positioning a trapped gold nanoparticle, and thus nanobubble, relative to a cell of interest. The method shows transfection of plasmid-DNA into individual mammalian cells with an efficiency of 75%.
AB - Cell selective introduction of therapeutic agents remains a challenging problem. Cavitation-based therapies including ultrasound-induced sonoporation and laser-induced optoporation have led the way for novel approaches to provide the potential of sterility and cell selectivity compared with viral or biochemical counterparts. Acoustic streaming, shockwaves and liquid microjets associated with the cavitation dynamics are implicated in gene and drug delivery. These approaches, however, often lead to non-uniform and sporadic molecular uptake that lacks refined spatial control and suffers from a significant loss of cell viability. Here we demonstrate spatially controlled cavitation instigated by laser-induced breakdown of an optically trapped single gold nanoparticle. Our unique approach employs optical tweezers to trap a single nanoparticle, which when irradiated by a nanosecond laser pulse is subject to laser-induced breakdown followed by cavitation. Using this method for laser-induced cavitation, we can gain additional degrees of freedom for the cavitation process - the particle material, its size, and its position relative to cells or tissues. We show the energy breakdown threshold of gold nanoparticles of l00nm with a single nanosecond laser pulse at 532 nm is three orders of magnitude lower than that for water, which leads to gentle nanocavitation enabling single cell transfection. We optimize the shear stress to the cells from the expanding bubble to be in the range of 1-10 kPa for transfection by precisely positioning a trapped gold nanoparticle, and thus nanobubble, relative to a cell of interest. The method shows transfection of plasmid-DNA into individual mammalian cells with an efficiency of 75%.
UR - http://www.scopus.com/inward/record.url?scp=84900502342&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84900502342&partnerID=8YFLogxK
U2 - 10.1117/12.2039647
DO - 10.1117/12.2039647
M3 - Conference contribution
AN - SCOPUS:84900502342
SN - 9780819498854
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Frontiers in Ultrafast Optics
PB - SPIE
T2 - Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIV
Y2 - 2 February 2014 through 5 February 2014
ER -