Simulated weightlessness affects the expression and activity of neuronal nitric oxide synthase in the rat brain

Nara Yoon, Kiyong Na, Hyun Soo Kim

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Spaceflight induces pathophysiological alterations in various organs. To study pathophysiological adaptations to weightlessness on the ground, the tail suspension (TS) rat model has been used to simulate the effects of weightlessness. There is currently little information on the effect of TS on the expression and activity of nitric oxide synthase (NOS) in the brain. In this study, we examined time-dependent alterations in the expression and activity of neuronal NOS (nNOS) in the brains of TS rats. Male Sprague-Dawley rats were tail-suspended for 1 (TS1), 7 (TS7), and 14 (TS14) days or rested on the ground for 3 days after 14 days of TS. TS1 and TS7 rats exhibited no significant alterations in the expression of nNOS compared to control rats, whereas nNOS expression in TS14 rats was significantly upregulated compared to control rats. Normalized expression of nNOS mRNA and protein in TS14 rats (1.86 ± 0.48 and 1.84 ± 0.29, respectively) were significantly higher than that of control rats (P < 0.001 and P < 0.001, respectively). Consistent with these results, significant elevations in NOS activity and NO production were observed in TS14 rats. Thus, we demonstrated a significant upregulation of nNOS expression, accompanied by significant increases in NOS activity and NO production, in the brain of rats exposed to simulated weightlessness.

Original languageEnglish
Pages (from-to)30692-30699
Number of pages8
Issue number19
Publication statusPublished - 2017

Bibliographical note

Funding Information:
The views and opinions expressed in this article are those of the authors and do not reflect the official policy or position of the Republic of Korea Air Force. The authors would like to thank Drs. Choong Sik Oh and Hye Sik Yun (Republic of Korea Air Force Aerospace Medical Center, Cheongju, Chungcheongbuk-do, Republic of Korea) for their technical assistance in conducting preliminary animal experiments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03935584) and by a faculty research grant of Yonsei University College of Medicine for 2016 (6-2016-0130).

Publisher Copyright:
© Yoon et al.

All Science Journal Classification (ASJC) codes

  • Oncology


Dive into the research topics of 'Simulated weightlessness affects the expression and activity of neuronal nitric oxide synthase in the rat brain'. Together they form a unique fingerprint.

Cite this