Abstract
The sensing module that converts physical or chemical stimuli into electrical signals is the core of future smart electronics in the post-Moore era. Challenges lie in the realization and integration of different detecting functions on a single chip. We propose a new design of on-chip construction for low-power consumption sensor, which is based on the optoelectronic detection mechanism with external stimuli and compatible with CMOS technology. A combination of flipped silicon nanomembrane phototransistors and stimuli-responsive materials presents low-power consumption (CMOS level) and demonstrates great functional expansibility of sensing targets, e.g., hydrogen concentration and relative humidity. With a device-first, wafer-compatible process introduced for large-scale silicon flexible electronics, our work shows great potential in the development of flexible and integrated smart sensing systems for the realization of Internet of Things applications.
Original language | English |
---|---|
Article number | eaaz6511 |
Journal | Science Advances |
Volume | 6 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2020 Apr |
Bibliographical note
Publisher Copyright:Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
All Science Journal Classification (ASJC) codes
- General