TY - JOUR
T1 - SGLT2 and DPP4 inhibitors improve Alzheimer's disease–like pathology and cognitive function through distinct mechanisms in a T2D–AD mouse model
AU - Sim, A. Young
AU - Choi, Da Hyun
AU - Kim, Jong Youl
AU - Kim, Eun Ran
AU - Goh, A. ra
AU - Lee, Yong ho
AU - Lee, Jong Eun
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/12
Y1 - 2023/12
N2 - Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) share common features, including insulin resistance. Brain insulin resistance has been implicated as a key factor in the pathogenesis of AD. Recent studies have demonstrated that anti-diabetic drugs sodium–glucose cotransporter-2 inhibitor (SGLT2-i) and dipeptidyl peptidase-4 inhibitor (DPP4-i) improve insulin sensitivity and provide neuroprotection. However, the effects of these two inhibitors on the brain metabolism and insulin resistance remain uninvestigated. We developed a T2D–AD mouse model using a high-fat diet (HFD) for 19 weeks along with a single dose of streptozotocin (100 mg/kg, intraperitoneally) at the fourth week of HFD initiation. Subsequently, the animals were treated with SGLT2-i (empagliflozin, 25 mg/kg/day orally [p.o.]) and DPP4-i (sitagliptin, 100 mg/kg/day p.o.) for 7 weeks. Subsequently, behavioral tests were performed, and the expression of insulin signaling, AD-related, and other signaling pathway proteins in the brain were examined. T2D–AD mice not only showed increased blood glucose levels and body weight but also insulin resistance. SGLT2-i and DPP4-i effectively ameliorated insulin sensitivity and reduced body weight in these mice. Furthermore, SGLT2-i and DPP4-i significantly improved hippocampal-dependent learning, memory, and cognitive functions in the T2D–AD mouse model. Interestingly, SGLT2-i and DPP4-i reduced the hyperphosphorylated tau (pTau) levels and amyloid β (Aβ) accumulation and enhanced brain insulin signaling. SGLT2-i reduced pTau accumulation through the angiotensin converting enzyme-2/angiotensin (1−7)/ mitochondrial assembly receptor axis, whereas DPP4-i reduced Aβ accumulation by increasing insulin-degrading enzyme levels. These findings suggest that SGLT2-i and DPP4-i prevent AD-like pathology and cognitive dysfunction in T2D mice potentially through affecting brain insulin signaling via different mechanisms.
AB - Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) share common features, including insulin resistance. Brain insulin resistance has been implicated as a key factor in the pathogenesis of AD. Recent studies have demonstrated that anti-diabetic drugs sodium–glucose cotransporter-2 inhibitor (SGLT2-i) and dipeptidyl peptidase-4 inhibitor (DPP4-i) improve insulin sensitivity and provide neuroprotection. However, the effects of these two inhibitors on the brain metabolism and insulin resistance remain uninvestigated. We developed a T2D–AD mouse model using a high-fat diet (HFD) for 19 weeks along with a single dose of streptozotocin (100 mg/kg, intraperitoneally) at the fourth week of HFD initiation. Subsequently, the animals were treated with SGLT2-i (empagliflozin, 25 mg/kg/day orally [p.o.]) and DPP4-i (sitagliptin, 100 mg/kg/day p.o.) for 7 weeks. Subsequently, behavioral tests were performed, and the expression of insulin signaling, AD-related, and other signaling pathway proteins in the brain were examined. T2D–AD mice not only showed increased blood glucose levels and body weight but also insulin resistance. SGLT2-i and DPP4-i effectively ameliorated insulin sensitivity and reduced body weight in these mice. Furthermore, SGLT2-i and DPP4-i significantly improved hippocampal-dependent learning, memory, and cognitive functions in the T2D–AD mouse model. Interestingly, SGLT2-i and DPP4-i reduced the hyperphosphorylated tau (pTau) levels and amyloid β (Aβ) accumulation and enhanced brain insulin signaling. SGLT2-i reduced pTau accumulation through the angiotensin converting enzyme-2/angiotensin (1−7)/ mitochondrial assembly receptor axis, whereas DPP4-i reduced Aβ accumulation by increasing insulin-degrading enzyme levels. These findings suggest that SGLT2-i and DPP4-i prevent AD-like pathology and cognitive dysfunction in T2D mice potentially through affecting brain insulin signaling via different mechanisms.
KW - Alzheimer's disease
KW - Amyloid β
KW - Dipeptidyl peptidase-4 inhibitor
KW - Hyperphosphorylated tau
KW - Sodium–glucose cotransporter-2 inhibitor
KW - Type 2 diabetes mellitus
UR - http://www.scopus.com/inward/record.url?scp=85174713273&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85174713273&partnerID=8YFLogxK
U2 - 10.1016/j.biopha.2023.115755
DO - 10.1016/j.biopha.2023.115755
M3 - Article
C2 - 37871560
AN - SCOPUS:85174713273
SN - 0753-3322
VL - 168
JO - Biomedicine and Pharmacotherapy
JF - Biomedicine and Pharmacotherapy
M1 - 115755
ER -