TY - JOUR
T1 - Sensitive angiogenesis imaging of orthotopic bladder tumors in mice using a selective magnetic resonance imaging contrast agent containing VEGF 121/rGel
AU - Cho, Eun Jin
AU - Yang, Jaemoon
AU - Mohamedali, Khalid A.
AU - Lim, Eun Kyung
AU - Kim, Eun Jung
AU - Farhangfar, Carol J.
AU - Suh, Jin Suck
AU - Haam, Seungjoo
AU - Rosenblum, Michael G.
AU - Huh, Yong Min
PY - 2011/7
Y1 - 2011/7
N2 - Objectives: To investigate the efficiency of magnetic resonance imaging (MRI) contrast agents employing vascular endothelial growth factor (VEGF 121)/rGel conjugated MnFe2O4 nanocrystals for imaging of neovasculature using a bladder tumor model. Materials and Methods: VEGF121/rGel was conjugated to MnFe2O4 nanoparticles (MNPs). The targeting efficiency and detection capability of the VEGF121/rGel-MNPs were investigated in both KDR-deficient (253JB-V) and KDR-overexpressing (PAE/KDR) cells using MRI. The internalization of VEGF121/rGel-MNPs into cells was confirmed by electron microscopy. Their phosphorylation ability and cytotoxicity were compared with unconjugated VEGF121/rGel. The orthotopic tumor mice were established by implanting low KDR-expressing 253JB-V cells into the bladder dome. After tail-vein injection of VEGF121/rGel-MNPs, the MR signal enhancement of intratumoral vessels by VEGF121/rGel-MNPs was observed and inhibition test using VEGF121 was also conducted. Ex vivo MR imaging of tumor tissue, and a fluorescence immunostaining study was also performed. Results: The water-soluble VEGF121/rGel-MNPs (44.5 ± 1.2 nm) were stably suspended in the biologic media and exhibited a high relaxivity coefficient (423 mM-1s-1). They demonstrated sufficient targeting capability against KDR-overexpressing PAE/KDR cells, as confirmed by dosedependent MR images and VEGF121 inhibition tests The phosphorylation activity of KDR and cytotoxicity of VEGF121/rGel-MNPs were evaluated. VEGF121/rGel-MNPs successfully targeted the tumor and provided accurate anatomic details through (i) acquisition of clear neoangiogenic vascular distributions and (ii) obvious enhancement of the MR signal in T2*-weighted images. Immunostaining and blocking studies demonstrated the specific targeting ability of VEGF121/rGel- MNPs toward intratumoral angiogenesis. Conclusions: Synthesized VEGF 121/rGel-MNPs as targeted MR imaging contrast agents can be specifically delivered to tumors and bind to KDR-expressing angiogenic tumor vessels.
AB - Objectives: To investigate the efficiency of magnetic resonance imaging (MRI) contrast agents employing vascular endothelial growth factor (VEGF 121)/rGel conjugated MnFe2O4 nanocrystals for imaging of neovasculature using a bladder tumor model. Materials and Methods: VEGF121/rGel was conjugated to MnFe2O4 nanoparticles (MNPs). The targeting efficiency and detection capability of the VEGF121/rGel-MNPs were investigated in both KDR-deficient (253JB-V) and KDR-overexpressing (PAE/KDR) cells using MRI. The internalization of VEGF121/rGel-MNPs into cells was confirmed by electron microscopy. Their phosphorylation ability and cytotoxicity were compared with unconjugated VEGF121/rGel. The orthotopic tumor mice were established by implanting low KDR-expressing 253JB-V cells into the bladder dome. After tail-vein injection of VEGF121/rGel-MNPs, the MR signal enhancement of intratumoral vessels by VEGF121/rGel-MNPs was observed and inhibition test using VEGF121 was also conducted. Ex vivo MR imaging of tumor tissue, and a fluorescence immunostaining study was also performed. Results: The water-soluble VEGF121/rGel-MNPs (44.5 ± 1.2 nm) were stably suspended in the biologic media and exhibited a high relaxivity coefficient (423 mM-1s-1). They demonstrated sufficient targeting capability against KDR-overexpressing PAE/KDR cells, as confirmed by dosedependent MR images and VEGF121 inhibition tests The phosphorylation activity of KDR and cytotoxicity of VEGF121/rGel-MNPs were evaluated. VEGF121/rGel-MNPs successfully targeted the tumor and provided accurate anatomic details through (i) acquisition of clear neoangiogenic vascular distributions and (ii) obvious enhancement of the MR signal in T2*-weighted images. Immunostaining and blocking studies demonstrated the specific targeting ability of VEGF121/rGel- MNPs toward intratumoral angiogenesis. Conclusions: Synthesized VEGF 121/rGel-MNPs as targeted MR imaging contrast agents can be specifically delivered to tumors and bind to KDR-expressing angiogenic tumor vessels.
UR - http://www.scopus.com/inward/record.url?scp=79959926354&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959926354&partnerID=8YFLogxK
U2 - 10.1097/RLI.0b013e3182174fad
DO - 10.1097/RLI.0b013e3182174fad
M3 - Article
C2 - 21512397
AN - SCOPUS:79959926354
SN - 0020-9996
VL - 46
SP - 441
EP - 449
JO - Investigative Radiology
JF - Investigative Radiology
IS - 7
ER -