Abstract
Discovering and segmenting objects in videos is a challenging task due to large variations of objects in appearances, deformed shapes and cluttered backgrounds. In this paper, we propose to segment objects and understand their visual semantics from a collection of videos that link to each other, which we refer to as semantic co-segmentation. Without any prior knowledge on videos, we first extract semantic objects and utilize a tracking-based approach to generate multiple object-like tracklets across the video. Each tracklet maintains temporally connected segments and is associated with a predicted category. To exploit rich information from other videos, we collect tracklets that are assigned to the same category from all videos, and co-select tracklets that belong to true objects by solving a submodular function. This function accounts for object properties such as appearances, shapes and motions, and hence facilitates the co-segmentation process. Experiments on three video object segmentation datasets show that the proposed algorithm performs favorably against the other state-of-the-art methods.
Original language | English |
---|---|
Title of host publication | Computer Vision - 14th European Conference, ECCV 2016, Proceedings |
Editors | Bastian Leibe, Jiri Matas, Nicu Sebe, Max Welling |
Publisher | Springer Verlag |
Pages | 760-775 |
Number of pages | 16 |
ISBN (Print) | 9783319464923 |
DOIs | |
Publication status | Published - 2016 |
Event | 14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands Duration: 2016 Oct 8 → 2016 Oct 16 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 9908 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 14th European Conference on Computer Vision, ECCV 2016 |
---|---|
Country/Territory | Netherlands |
City | Amsterdam |
Period | 16/10/8 → 16/10/16 |
Bibliographical note
Funding Information:This work is supported in part by the NSF CAREER grant #1149783, NSF IIS grant #1152576, and gifts from Adobe and Nvidia. G. Zhong is sponsored by China Scholarship Council.
Publisher Copyright:
© Springer International Publishing AG 2016.
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)