Abstract
3D ordered N-doped carbon with an inverse opal nanostructure (cPDA-IO) is synthesized by the carbonization of polydopamine using self-assembled polystyrene as a template. The inverse opal structure provides an ideal architecture for storing the discharge product and transporting Li+ and oxygen. The direct current flow through the framework of the inverse opal structure, which does not contain any binder or conductive additives, decreases the electrode's electrical resistance and eliminates side effects associated with binder decomposition. The inverse opal structure made of N-doped carbon increases the catalytic activity by lowering the overpotential for the oxygen reduction reaction and oxygen evolution reaction. A Li-O2 battery fabricated using cPDA-IO as the cathode exhibits remarkably enhanced performance, such as a high specific capacity of 43※908 mAh g-1 cPDA-IO with a reversibility of 99.5% as well as stable cycling performance for up to 91 cycles under the harsh conditions of 500 mA g-1 carbon and a curtaining capacity of 1000 mAh g-1 carbon. Its good electrochemical performance can be attributed to the synergistic effects of the inverse opal structure, binder-free structure, and N-doped carbon.
Original language | English |
---|---|
Pages (from-to) | 7791-7798 |
Number of pages | 8 |
Journal | ACS Applied Energy Materials |
Volume | 2 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2019 Nov 25 |
Bibliographical note
Funding Information:This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded from the Ministry of Education (NRF-2019R1A6A1A11055660) and by a National Research Foundation (NRF) grant funded from the Ministry of Science, ICT, and Future Planning (NRF-2018M3A7B4071535) and the Hyundai Motor Company.
Publisher Copyright:
© 2019 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Chemical Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Materials Chemistry
- Electrical and Electronic Engineering
- Electrochemistry