Abstract
Achieving high accuracy in the imaging of biological targets is a challenging issue. For MRI, to enhance imaging accuracy, two different imaging modes with specific contrast agents are used; one is a T1 type for a positive MRI signal and the other is a T2 type for a negative signal. Conventional contrast agents respond only in a single imaging mode and frequently encounter ambiguities in the MR images. Here, we propose a magnetically decoupled core-shell design concept to develop a dual mode nanoparticle contrast agent (DMCA). This DMCA not only possesses superior MR contrast effects but also has the unique capability of displaying AND logic signals in both the T1 and T2 modes. The latter enables self-confirmation of images and leads to greater diagnostic accuracy. A variety of novel DMCAs are possible, and the use of DMCAs can potentially bring the accuracy of MR imaging of diseases to a higher level.
Original language | English |
---|---|
Pages (from-to) | 11015-11017 |
Number of pages | 3 |
Journal | Journal of the American Chemical Society |
Volume | 132 |
Issue number | 32 |
DOIs | |
Publication status | Published - 2010 Aug 18 |
All Science Journal Classification (ASJC) codes
- Catalysis
- Chemistry(all)
- Biochemistry
- Colloid and Surface Chemistry