Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride

Youngtak Oh, Viet Duc Le, Uday Narayan Maiti, Jin Ok Hwang, Woo Jin Park, Joonwon Lim, Kyung Eun Lee, Youn Sang Bae, Yong Hyun Kim, Sang Ouk Kim

Research output: Contribution to journalArticlepeer-review

88 Citations (Scopus)


Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g-1) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications.

Original languageEnglish
Pages (from-to)9148-9157
Number of pages10
JournalACS Nano
Issue number9
Publication statusPublished - 2015 Sept 22

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride'. Together they form a unique fingerprint.

Cite this