Abstract
Carbon capture and sequestration is a viable technology to reduce the concentration of CO2 emitted to the atmosphere. Salt precipitation due to dry-supercritical CO2 causes a reduction of permeability, having adverse effects on well injectivity and pressure build-up. This study evaluated the salt precipitation, brine flux patterns, and pressure build-up for two well constructions, (1) partially perforated (4 injection intervals) and (2) fully perforated throughout the target formation. Both well designs showed non-localized salt precipitation in low-k formations (5×10-15 and 50×10-15m2) and localized precipitation in high-k (250×10-15 and 500×10-15m2). It was also found that two distinct brine flux patterns occurred; under low-k conditions the brine flux was outward and parallel to CO2 migration and precipitation became limited. While under high-k conditions there developed back-flow of the brine which amplified salt precipitation. When this process occurred, the permeability reduction was orders of magnitude greater than when non-localized salt precipitation occurred. This reduction resulted in pressure build-up near the well in regions of the reservoir in which it occurred. Optimal injection conditions were found to be in reservoirs of mid-range permeability; which allowed for adequate pressure dissipation and minimized salt precipitation.
Original language | English |
---|---|
Pages (from-to) | 299-310 |
Number of pages | 12 |
Journal | International Journal of Greenhouse Gas Control |
Volume | 37 |
DOIs | |
Publication status | Published - 2015 Jun 1 |
Bibliographical note
Funding Information:The authors would like to thank anonymous reviewers. All financial support for this research was provided by both National Science Foundation ( EAR-1246404 ) and Ministry of Oceans and Fisheries for the project “Construction of carbon storage map and selection of demonstration sites in Korean offshore areas ( 20052004 )” in South Korea.
Publisher Copyright:
© 2015 Elsevier Ltd.
All Science Journal Classification (ASJC) codes
- Pollution
- Energy(all)
- Industrial and Manufacturing Engineering
- Management, Monitoring, Policy and Law