Abstract
This paper addresses an approach that recommends investment types to stock investors by discovering useful rules from past changing patterns of stock prices in databases. First, we define a new rule model for recommending stock investment types. For a frequent pattern of stock prices, if its subsequent stock prices are matched to a condition of an investor, the model recommends a corresponding investment type for this stock. The frequent pattern is regarded as a rule head, and the subsequent part a rule body. We observed that the conditions on rule bodies are quite different depending on dispositions of investors while rule heads are independent of characteristics of investors in most cases. With this observation, we propose a new method that discovers and stores only the rule heads rather than the whole rules in a rule discovery process. This allows investors to impose various conditions on rule bodies flexibly, and also improves the performance of a rule discovery process by reducing the number of rules to be discovered. For efficient discovery and matching of rules, we propose methods for discovering frequent patterns, constructing a frequent pattern base, and its indexing. We also suggest a method that finds the rules matched to a query from a frequent pattern base, and a method that recommends an investment type by using the rules. Finally, we verify the effectiveness and the efficiency of our approach through extensive experiments with real-life stock data.
Original language | English |
---|---|
Title of host publication | Proceedings - 32nd Annual IEEE International Computer Software and Applications Conference, COMPSAC 2008 |
Pages | 192-198 |
Number of pages | 7 |
DOIs | |
Publication status | Published - 2008 |
Event | 32nd Annual IEEE International Computer Software and Applications Conference, COMPSAC 2008 - Turku, Finland Duration: 2008 Jul 28 → 2008 Aug 1 |
Publication series
Name | Proceedings - International Computer Software and Applications Conference |
---|---|
ISSN (Print) | 0730-3157 |
Other
Other | 32nd Annual IEEE International Computer Software and Applications Conference, COMPSAC 2008 |
---|---|
Country/Territory | Finland |
City | Turku |
Period | 08/7/28 → 08/8/1 |
Bibliographical note
Funding Information:This research was supported by the Korea Science and Engineering Foundation (KOSEF) Grant (No. R01-2008-000-20872-0) funded by the Korea government (MEST) and also was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program (No. IITA-2009-C1090-0902-0040) supervised by the IITA (Institute for Information Technology Advancement).
All Science Journal Classification (ASJC) codes
- Software
- Computer Science Applications