Role of oxalic acid in structural formation of sodium silicate-based silica aerogel by ambient pressure drying

Ha Yoon Nah, Vinayak G. Parale, Hae Noo Ree Jung, Kyu Yeon Lee, Chang Hyun Lim, Yang Seo Ku, Hyung Ho Park

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


Abstract: Recently, the demand of sodium silicate-based silica aerogels has decreased due to its inadequate physical properties when compared to those made by other silicon alkoxides. To avoid this problem, introduction of a drying control chemical additive (DCCA) in the sol has received great attention. DCCA is one of the additives that can control the rate of hydrolysis and the condensation reaction in sol state by the formation of hydrogen bonds between DCCA and silanol groups of silica sol. A control over these reactions results in a uniform pore size distribution, which, in turn, decreases the drying stress with a decrease in pore size, in accordance with the Young–Laplace equation. Therefore, the structure of the silica aerogel can be maintained by minimizing the volume shrinkage due to drying stress. In this research, oxalic acid was first used as DCCA in the formation of sodium silicate-based silica aerogel by ambient pressure drying. The physical properties of these silica aerogels can be changed by changing the molar ratio of oxalic acid/Na2SiO3 in the sol state. When the oxalic acid:Na2SiO3 molar ratio was 15 × 10−4 in the sol state, aerogels with high specific surface area (623.2 m2/g), pore volume (4.271 cm3/g), average pore diameter (27.41 nm), high porosity (94.3%), high contact angle (144.09°), and high optical transmittance (75%) were obtained. Graphical abstract: [InlineMediaObject not available: see fulltext.].

Original languageEnglish
Pages (from-to)302-310
Number of pages9
JournalJournal of Sol-Gel Science and Technology
Issue number2
Publication statusPublished - 2018 Feb 1

Bibliographical note

Funding Information:
Acknowledgements This work was supported by Nano-Convergence Foundation ( funded by the Ministry of Science, ICT and Future Planning (MSIP, Korea) & the Ministry of Trade, Industry and Energy (MOTIE, Korea) (Project Number: R201602310).

Publisher Copyright:
© 2017, Springer Science+Business Media, LLC, part of Springer Nature.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Chemistry(all)
  • Biomaterials
  • Condensed Matter Physics
  • Materials Chemistry


Dive into the research topics of 'Role of oxalic acid in structural formation of sodium silicate-based silica aerogel by ambient pressure drying'. Together they form a unique fingerprint.

Cite this