Abstract
The present study exposes the effect of deagglomeration using rhamnolipid on anaerobic granular biosolids (AGB) followed by ultrasonic homogenization for effective biohydrogen production. Rhamnolipid was used to remove the extracellular polymeric substance bound over the surface of AGB to increase the rate of biogranular lysis during ultrasonic homogenization. Extracellular polymeric substance (EPS) removal was achieved at an optimum rhamnolipid dosage of 0.04 g Rh/g SS. Ultrasonic homogenization (UH) of AGB demands 27016 kJ/kg TS of specific energy to achieve 16.8% and 13.9% of biogranular lysis and biosolids reduction, respectively. However, rhamnolipid-alkaline pH induced ultrasonic homogenization (RAUH) demand lesser (12607 kJ/kg TS) and achieves greater biogranular lysis (25.4%) and biosolids reduction (20.7%). RAUH significantly saves the net energy. Exponential first order kinetic analysis was done to evaluate and compare the biohydrogen production potential of RAUH with that of UH. The biohydrogen production was found to be 55.1 mL H2/g COD and 36.7 mL H2/g COD for RAUH and UH respectively. A higher positive net energy of 2.62 kWh/kg AGB was achieved by RAUH when compared to UH (−3.49 kWh/kg anaerobic granular biosolids).
Original language | English |
---|---|
Pages (from-to) | 5890-5899 |
Number of pages | 10 |
Journal | International Journal of Hydrogen Energy |
Volume | 45 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2020 Feb 21 |
Bibliographical note
Funding Information:Authors are thankful to DST , India, for providing fund for this research through the Young Scientist plan.
Publisher Copyright:
© 2019 Hydrogen Energy Publications LLC
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology