Abstract
We propose a novel algorithm, namely Resembled Generative Adversarial Networks (GAN), that generates two different domain data simultaneously where they resemble each other. Although recent GAN algorithms achieve the great success in learning the cross-domain relationship [9, 19, 22], their application is limited to domain transfers, which requires the input image. The first attempt to tackle the data generation of two domains was proposed by CoGAN [10]. However, their solution is inherently vulnerable for various levels of domain similarities. Unlike CoGAN, our Resembled GAN implicitly induces two generators to match feature covariance from both domains, thus leading to share semantic attributes. Hence, we effectively handle a wide range of structural and semantic similarities between various two domains. Based on experimental analysis on various datasets, we verify that the proposed algorithm is effective for generating two domains with similar attributes.
Original language | English |
---|---|
Publication status | Published - 2019 Jan 1 |
Event | 29th British Machine Vision Conference, BMVC 2018 - Newcastle, United Kingdom Duration: 2018 Sept 3 → 2018 Sept 6 |
Conference
Conference | 29th British Machine Vision Conference, BMVC 2018 |
---|---|
Country/Territory | United Kingdom |
City | Newcastle |
Period | 18/9/3 → 18/9/6 |
All Science Journal Classification (ASJC) codes
- Computer Vision and Pattern Recognition