Repetitive controller design for minimum track misregistration in hard disk drives

Sung Won Park, Jun Jeong, Hyun Seok Yang, Young Pil Park, No Cheol Park

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)


Repetitive control is a widely used technique for the compensation of repeatable error in systems that contain rotating mechanisms or repeat a trajectory. Generally, it includes delay chains and a low-pass filter in the positive feedback loop, which generate a periodic signal. The controller has typically been implemented in a plug-in fashion and designed heuristically with the simplest form of the filter. However, this design approach is somewhat ambiguous in the selection of controller parameters because of its influence over nonharmonic frequencies. Also, it leaves the possibility for further improvement. This paper presents an improved design method for the repetitive controller that provides minimum track misregistration (TMR) in a hard disk drive (HDD). For TMR prediction, the method identifies disturbances acting on an HDD and estimates servo performance, using the identification result. We have confirmed the identification and estimation procedure through experiments. In our method, first the basic tracking controller is designed and later the repetitive controller is designed in conjunction with a Q filter. A cost function based on Parseval's theorem, reflecting the servo performance as TMR, is defined. Then the servo performance is estimated from the identified disturbance, and the plant and designed controller's frequency response are modified as necessary by changing the parameters of the controller, whose optimization is carried out with a commercial nonlinear optimization tool. The design strategy facilitates the controller design by providing an accurate estimation for the attainable servo performance and design criteria under the optimization framework.

Original languageEnglish
Pages (from-to)2522-2528
Number of pages7
JournalIEEE Transactions on Magnetics
Issue number9
Publication statusPublished - 2005 Sept

Bibliographical note

Funding Information:
This work was supported by the Korea Science and Engineering Foundation through CISD (R11-1997-042-11002-0). The authors thank Storage System Division of Samsung Electronics, Ltd. for their assistance on the experiment and helpful advice in this work.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering


Dive into the research topics of 'Repetitive controller design for minimum track misregistration in hard disk drives'. Together they form a unique fingerprint.

Cite this