Abstract
This paper deals with an adaptation of artificial neural networks in the context of the reliability analysis of non-linear limit state functions. An extreme learning machine (ELM) that is categorized as a single-hidden-layer feed-forward neural network is considered in the present study. Using a trained ELM-based approximate meta-model, the reliability analysis is conducted in conjunction with Monte Carlo simulation. The ELM is compared with both single and multiple-hidden-layer back-propagation neural networks. A number of non-linear and large-dimensionality limit state functions are explored to support the proposed method in terms of approximation accuracy and reliability index.
Original language | English |
---|---|
Pages (from-to) | 448-454 |
Number of pages | 7 |
Journal | Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability |
Volume | 226 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2012 Oct |
Bibliographical note
Funding Information:This research constitutes part of the Basic Science Research Program of the National Research Foundation of Korea (NRF) which is funded by the Ministry of Education, Science and Technology under grant 2011-0024829.
All Science Journal Classification (ASJC) codes
- Safety, Risk, Reliability and Quality