Relevance-CAM: Your model already knows where to look

Jeong Ryong Lee, Sewon Kim, Inyong Park, Taejoon Eo, Dosik Hwang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

42 Citations (Scopus)


With increasing fields of application for neural networks and the development of neural networks, the ability to explain deep learning models is also becoming increasingly important. Especially, prior to practical applications, it is crucial to analyze a model's inference and the process of generating the results. A common explanation method is Class Activation Mapping(CAM) based method where it is often used to understand the last layer of the convolutional neural networks popular in the field of Computer Vision. In this paper, we propose a novel CAM method named Relevance-weighted Class Activation Mapping(Relevance-CAM) that utilizes Layer-wise Relevance Propagation to obtain the weighting components. This allows the explanation map to be faithful and robust to the shattered gradient problem, a shared problem of the gradient based CAM methods that causes noisy saliency maps for intermediate layers. Therefore, our proposed method can better explain a model by correctly analyzing the intermediate layers as well as the last convolutional layer. In this paper, we visualize how each layer of the popular image processing models extracts class specific features using Relevance-CAM, evaluate the localization ability, and show why the gradient based CAM cannot be used to explain the intermediate layers, proven by experimenting the weighting component. Relevance-CAM outperforms other CAM-based methods in recognition and localization evaluation in layers of any depth.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Number of pages10
ISBN (Electronic)9781665445092
Publication statusPublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 2021 Jun 192021 Jun 25

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919


Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online

Bibliographical note

Publisher Copyright:
© 2021 IEEE

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Relevance-CAM: Your model already knows where to look'. Together they form a unique fingerprint.

Cite this