Regulation of dauer formation by O-GlcNAcylation in Caenorhabditis elegans

Jeeyong Lee, Kwang Youl Kim, Jihyun Lee, Young Ki Paik

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


Modification of proteins at serine or threonine residues with N-acetylglucosamine, termed O-GlcNAcylation, plays an important role in most eukaryotic cells. To understand the molecular mechanism by which O-GlcNAcylation regulates the entry of Caenorhabditis elegans into the non-aging dauer state, we performed proteomic studies using two mutant strains: the O-GlcNAc transferase-deficient ogt-1(ok430) strain and the O-GlcNAcase-defective oga-1(ok1207) strain. In the presence of the dauer pheromone daumone, ogt-1 showed suppression of dauer formation, whereas oga-1 exhibited enhancement of dauer formation. Consistent with these findings, treatment of wild-type N2 worms with low concentrations of daumone and the O-GlcNAcase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-Nphenylcarbamate (PUGNAc) enhanced dauer formation, which was dependent on intact O-GlcNAcylation metabolism. We also found that the treatment of daumone enhanced O-GlcNAcylation in vivo. Seven proteins, identified by coupled two-dimensional electrophoresis/liquid chromatography-mass spectroscopy (LC-MS) analysis, were differentially expressed in oga-1(ok1207) worms compared with wild-type N2 worms. The identities of these proteins suggest that OGlcNAcylation influences stress resistance, protein folding, and mitochondrial function. Using O-GlcNAc labeling with fluorescent dye combined with two-dimensional electrophoresis/ LC-MS analysis, we also identified five proteins that were differentially O-GlcNAcylated during dauer formation. Analysis of these candidate O-GlcNAcylated proteins suggests that O-GlcNAcylation may regulate cytoskeleton modifications and protein turnover during dauer formation.

Original languageEnglish
Pages (from-to)2930-2939
Number of pages10
JournalJournal of Biological Chemistry
Issue number5
Publication statusPublished - 2010 Jan 29

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Regulation of dauer formation by O-GlcNAcylation in Caenorhabditis elegans'. Together they form a unique fingerprint.

Cite this