Real-time compressive tracking

Kaihua Zhang, Lei Zhang, Ming Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1253 Citations (Scopus)

Abstract

It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these mis-aligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.

Original languageEnglish
Title of host publicationComputer Vision, ECCV 2012 - 12th European Conference on Computer Vision, Proceedings
Pages864-877
Number of pages14
EditionPART 3
DOIs
Publication statusPublished - 2012
Event12th European Conference on Computer Vision, ECCV 2012 - Florence, Italy
Duration: 2012 Oct 72012 Oct 13

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 3
Volume7574 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other12th European Conference on Computer Vision, ECCV 2012
Country/TerritoryItaly
CityFlorence
Period12/10/712/10/13

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Real-time compressive tracking'. Together they form a unique fingerprint.

Cite this