TY - JOUR
T1 - Quasi-Solid-State SiO2 Electrolyte Prepared from Raw Fly Ash for Enhanced Solar Energy Conversion
AU - Choi, Gyo Hun
AU - Park, Jaehyeong
AU - Bae, Sungjun
AU - Park, Jung Tae
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - Quasi-solid-state electrolytes in dye-sensitized solar cells (DSSCs) prevent solvent leakage or evaporation and stability issues that conventional electrolytes cannot; however, there are no known reports that use such an electrolyte based on fly ash SiO2 (FA_SiO2) from raw fly ash (RFA) for solar energy conversion applications. Hence, in this study, quasi-solid-state electrolytes based on FA_SiO2 are prepared from RFA and poly(ethylene glycol) (PEG) for solar energy conversion. The structural, morphological, chemical, and electrochemical properties of the DSSCs using this electrolyte are characterized by X-ray diffraction (XRD), high-resolution field-emission scanning electron microscopy (HR-FESEM), X-ray fluorescence (XRF), diffuse reflectance spectroscopy, electrochemical impedance spectroscopy (EIS), and incident photon-to-electron conversion efficiency (IPCE) measurements. The DSSCs based on the quasi-solid-state electrolyte (SiO2) show a cell efficiency of 5.5%, which is higher than those of nanogel electrolytes (5.0%). The enhancement of the cell efficiency is primarily due to the increase in the open circuit voltage and fill factor caused by the reduced electron recombination and improved electron transfer properties. The findings confirm that the RFA-based quasi-solid-state (SiO2) electrolyte is an alternative to conventional liquid-state electrolytes, making this approach among the most promising strategies for use in low-cost solar energy conversion devices.
AB - Quasi-solid-state electrolytes in dye-sensitized solar cells (DSSCs) prevent solvent leakage or evaporation and stability issues that conventional electrolytes cannot; however, there are no known reports that use such an electrolyte based on fly ash SiO2 (FA_SiO2) from raw fly ash (RFA) for solar energy conversion applications. Hence, in this study, quasi-solid-state electrolytes based on FA_SiO2 are prepared from RFA and poly(ethylene glycol) (PEG) for solar energy conversion. The structural, morphological, chemical, and electrochemical properties of the DSSCs using this electrolyte are characterized by X-ray diffraction (XRD), high-resolution field-emission scanning electron microscopy (HR-FESEM), X-ray fluorescence (XRF), diffuse reflectance spectroscopy, electrochemical impedance spectroscopy (EIS), and incident photon-to-electron conversion efficiency (IPCE) measurements. The DSSCs based on the quasi-solid-state electrolyte (SiO2) show a cell efficiency of 5.5%, which is higher than those of nanogel electrolytes (5.0%). The enhancement of the cell efficiency is primarily due to the increase in the open circuit voltage and fill factor caused by the reduced electron recombination and improved electron transfer properties. The findings confirm that the RFA-based quasi-solid-state (SiO2) electrolyte is an alternative to conventional liquid-state electrolytes, making this approach among the most promising strategies for use in low-cost solar energy conversion devices.
KW - SiO
KW - dye-sensitized solar cells (DSSCs)
KW - quasi-solid-state electrolyte
KW - raw fly ash
KW - solar energy conversion
UR - http://www.scopus.com/inward/record.url?scp=85130721292&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130721292&partnerID=8YFLogxK
U2 - 10.3390/ma15103576
DO - 10.3390/ma15103576
M3 - Article
AN - SCOPUS:85130721292
SN - 1996-1944
VL - 15
JO - Materials
JF - Materials
IS - 10
M1 - 3576
ER -