Abstract
We study the properties of the Δ isobar in the symmetric and asymmetric nuclear matter using the QCD sum rules approach based on the energy dispersion relation. Allowing for different continuum thresholds for the polarization tensors with different dimensions, we find stable masses for the Δ in both the vacuum and the medium. Compared to the nucleon case, we find that the vector repulsion is smaller for the Δ while the scalar attraction is similar (75 MeV vector repulsion and 200 MeV scalar attraction in the symmetric matter). The smaller vector repulsion can be understood using the Pauli principle and a constituent quark model. Also, the isospin dependence of the quasiparticle energy, which mainly comes from the vector self-energy, is quite weak. We also allow for an explicit π-N continuum contribution to the polarization function but find its effect to be minimal. Phenomenological consequences of our results are discussed.
Original language | English |
---|---|
Article number | 025206 |
Journal | Physical Review C |
Volume | 98 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2018 Aug 22 |
Bibliographical note
Funding Information:This material is based upon work supported by the São Paulo Research Foundation (FAPESP) under Grants No. 2017/15346-0 and No. 2016/02717-8 (J.M.L. and R.D.M.) and Korea National Research Foundation Grants No. NRF-2016R1D1A1B03930089 (S.H.L.), No. NRF-2018R1D1A1B07043234 (A.P.), and No. NRF-2017R1D1A1B03033685 (K.S.J.).
Funding Information:
This material is based upon work supported by the São Paulo Research Foundation (FAPESP) under Grants No. 2017/15346-0 and No. 2016/02717-8 (J.M.L. and R.D.M.) and Korea National Research Foundation Grants No. NRF-2016R1D1A1B03930089 (S.H.L.), No. NRF-2018R1D1A1B07043234 (A.P.), and No. NRF-2017R1D1A1B03033685 (K.S.J.). A part of the calculation of the OPE was checked using the package “FeynCalc 9.0” .
Publisher Copyright:
© 2018 American Physical Society.
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics