Abstract
This paper proposes a novel approach to high-dynamic-range (HDR) imaging of dynamic scenes to eliminate ghosting artifacts in HDR images when in the presence of severe misalignment (large object or camera motion) in input low-dynamic-range (LDR) images. Recent non-flow-based methods suffer from ghosting artifacts in the presence of large object motion. Flow-based methods face the same issue since their optical flow algorithms yield huge alignment errors. To eliminate ghosting artifacts, we propose a simple yet effective alignment network for solving the misalignment. The proposed pyramid inter-attention module (PIAM) performs alignment of LDR features by leveraging inter-attention maps. Additionally, to boost the representation of aligned features in the merging process, we propose a dual excitation block (DEB) that recalibrates each feature both spatially and channel-wise. Exhaustive experimental results demonstrate the effectiveness of the proposed PIAM and DEB, achieving state-of-the-art performance in terms of producing ghost-free HDR images.
Original language | English |
---|---|
Article number | 5102 |
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Sensors (Switzerland) |
Volume | 20 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2020 Sept 2 |
Bibliographical note
Funding Information:Funding: This work was supported by Institute of Information and communications Technology Planning and Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-00056, To create AI systems that act appropriately and effectively in novel situations that occur in open worlds).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Information Systems
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Instrumentation
- Electrical and Electronic Engineering