Abstract
Tungsten (W) thin film was deposited using pulsed chemical vapor deposition (pulsed CVD) and evaluated as a nucleation layer for W-plug deposition at the contact with an ultrahigh aspect ratio (contact height: 3.51 μm and aspect ratio: 13.7-14.9) for sub-100 nm dynamic random access memory technology (DRAM). The deposition stage for pulsed CVD-W film is composed of 4 sequential steps, resulting one deposition cycle; (1) Reaction of tungsten hexafluoride (WF 6) with silane (SiH4) (2) Inert gas purge (3) SiH 4 exposure (4) Inert gas purge while the deposition of conventional CVD-W nucleation is based on the simultaneous flow of SiH4 and WF6. W growth per cycle was extremely linear with growth rate of -1.32 -1.5 nm/cycle at 400°C. W film deposited by pulsed CVD showed a better conformality at the contact holes with an aspect ratio of ∼14 as compared to W film deposited by conventional CVD. It was found that a resistivity of pulsed CVD-W film was closely related with its phase (body centered cubic α-W or primitive cubic β-W) and microstructure characterized by grain size as well as impurity content. The integration results showed that a lower contact resistance was obtained when pulsed CVD-W film was used as a nucleation layer even though pulsed CVD-W film has a higher film resistivity (∼100 mΩ-cm) compared to conventional CVD-W nucleation layer (∼25 μΩ-cm). It was found that a lower contact resistance of pulsed CVD-W based plug fill scheme was mainly due to its better plug filling capability.
Original language | English |
---|---|
Pages (from-to) | 749-755 |
Number of pages | 7 |
Journal | Advanced Metallization Conference (AMC) |
Publication status | Published - 2004 |
Event | Advanced Metallization Conference 2004, AMC 2004 - San Diego, CA, United States Duration: 2004 Oct 19 → 2004 Oct 21 |
All Science Journal Classification (ASJC) codes
- Chemical Engineering(all)