TY - JOUR
T1 - Protein folding in vivo revisited
AU - Choi, Seong Il
AU - Kwon, Soonbin
AU - Son, Ahyun
AU - Jeong, Hotcherl
AU - Kim, Kyun Hwan
AU - Seong, Baik L.
PY - 2013
Y1 - 2013
N2 - Protein folding in vivo is extremely intricate and challenging to examine or predict because the conformational changes, including folding, misfolding, and aggregation, are largely influenced by the cellular environment. Traditionally, cellular protein folding has been considered predominantly in the context of the Anfinsen postulate and molecular chaperones. However, accumulating evidence reveals that these models have limitations. In this review we revisit these models, and discuss co-translational folding, binding partner-mediated folding, and RNA-mediated folding as alternative or supplementary folding helpers. In addition, we discuss the folding helper systems mediated by macromolecules (e.g., ribosomes, membranes, and prefolded domains in multidomain proteins) that are tightly linked to newly synthesized polypeptides during protein biogenesis. These cis-acting folding helper systems, conceptually different from the trans-acting molecular chaperones, could play a crucial role in protein folding in vivo. Importantly, there is increasing evidence that the surface charges and excluded volume of macromolecules are important factors for stabilizing their connected polypeptides against aggregation. This stabilizing mechanism suggests that macromolecules including RNAs and proteins, let alone molecular chaperones, have an intrinsic ability to exert chaperoning function on their connected polypeptides independent of the linkage type between them. As an effective way to overcome the adverse effect of macromolecular crowding on protein folding, here we suggest that nascent polypeptide chains utilize the crowded environment in favor of productive folding by interacting with macromolecules.
AB - Protein folding in vivo is extremely intricate and challenging to examine or predict because the conformational changes, including folding, misfolding, and aggregation, are largely influenced by the cellular environment. Traditionally, cellular protein folding has been considered predominantly in the context of the Anfinsen postulate and molecular chaperones. However, accumulating evidence reveals that these models have limitations. In this review we revisit these models, and discuss co-translational folding, binding partner-mediated folding, and RNA-mediated folding as alternative or supplementary folding helpers. In addition, we discuss the folding helper systems mediated by macromolecules (e.g., ribosomes, membranes, and prefolded domains in multidomain proteins) that are tightly linked to newly synthesized polypeptides during protein biogenesis. These cis-acting folding helper systems, conceptually different from the trans-acting molecular chaperones, could play a crucial role in protein folding in vivo. Importantly, there is increasing evidence that the surface charges and excluded volume of macromolecules are important factors for stabilizing their connected polypeptides against aggregation. This stabilizing mechanism suggests that macromolecules including RNAs and proteins, let alone molecular chaperones, have an intrinsic ability to exert chaperoning function on their connected polypeptides independent of the linkage type between them. As an effective way to overcome the adverse effect of macromolecular crowding on protein folding, here we suggest that nascent polypeptide chains utilize the crowded environment in favor of productive folding by interacting with macromolecules.
UR - http://www.scopus.com/inward/record.url?scp=84891792319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891792319&partnerID=8YFLogxK
U2 - 10.2174/138920371408131227170544
DO - 10.2174/138920371408131227170544
M3 - Review article
C2 - 24384034
AN - SCOPUS:84891792319
SN - 1389-2037
VL - 14
SP - 721
EP - 733
JO - Current Protein and Peptide Science
JF - Current Protein and Peptide Science
IS - 8
ER -