Abstract
We study dynamical behaviors of the ensemble of thermomechanical Cucker-Smale (in short TCS) particles with singular power-law communication weights in velocity and temperatures. For the particle TCS model, we present several sufficient frameworks for the global regularity of solution and a finite-time breakdown depending on the blow-up exponents in the powerlaw communication weights at the origin where the relative spatial distances become zero. More precisely, when the blow-up exponent in velocity communication weight is greater than unity and the blow-up exponent in temperature communication weights is more than twice of blow-up exponent in velocity communication, we show that there will be no finite time collision between particles, unless there are collisions initially. In contrast, when the blow-up exponent of velocity communication weight is smaller than unity, we show that there can be a collision in finite time. For the kinetic TCS equation, we present a local-in-time existence of a unique weak solution using the suitable regularization and compactness arguments.
Original language | English |
---|---|
Pages (from-to) | 379-407 |
Number of pages | 29 |
Journal | Networks and Heterogeneous Media |
Volume | 13 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2018 Sept 1 |
Bibliographical note
Publisher Copyright:© American Institute of Mathematical Sciences.
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Engineering(all)
- Computer Science Applications
- Applied Mathematics