TY - JOUR
T1 - Product attribute design using an agent-based simulation of an artificial market
AU - Kim, S. T.
AU - Hong, S. R.
AU - Kim, C. O.
PY - 2014/9
Y1 - 2014/9
N2 - New product development is a high-risk decision-making problem in which similar products compete with each other to expand their market shares. Brand-level diffusion predictions can help product design managers to analyse how product attribute specifications impact total market shares, which can, in turn, aid managers in choosing the designs that yield maximum profits. In this paper, we develop a product attribute design method in which an artificial market consisting of consumer agents in an interaction network is created to simulate the diffusion process of products, and a genetic algorithm is integrated with the artificial market to support the product design decision-making process. The contribution of this research is that the predicted market response to product alternatives is incorporated into the product design optimisation. Two empirical experiments were conducted on the Korean laptop computer market to demonstrate the potential of this integrated method. Preliminary experiment showed that our prediction diffusion curves had an average error of 3.04%. In the primary experiment, five designs were recommended, and a comparison with the 31 best-selling laptop computers resulted in an average error of less than 8% when the "Price" attribute was excluded.
AB - New product development is a high-risk decision-making problem in which similar products compete with each other to expand their market shares. Brand-level diffusion predictions can help product design managers to analyse how product attribute specifications impact total market shares, which can, in turn, aid managers in choosing the designs that yield maximum profits. In this paper, we develop a product attribute design method in which an artificial market consisting of consumer agents in an interaction network is created to simulate the diffusion process of products, and a genetic algorithm is integrated with the artificial market to support the product design decision-making process. The contribution of this research is that the predicted market response to product alternatives is incorporated into the product design optimisation. Two empirical experiments were conducted on the Korean laptop computer market to demonstrate the potential of this integrated method. Preliminary experiment showed that our prediction diffusion curves had an average error of 3.04%. In the primary experiment, five designs were recommended, and a comparison with the 31 best-selling laptop computers resulted in an average error of less than 8% when the "Price" attribute was excluded.
KW - Agent-based simulation
KW - Artificial market
KW - Genetic algorithm
KW - Product attribute design
KW - Product diffusion
UR - http://www.scopus.com/inward/record.url?scp=84906675308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906675308&partnerID=8YFLogxK
U2 - 10.2507/IJSIMM13(3)3.266
DO - 10.2507/IJSIMM13(3)3.266
M3 - Article
AN - SCOPUS:84906675308
SN - 1726-4529
VL - 13
SP - 288
EP - 299
JO - International Journal of Simulation Modelling
JF - International Journal of Simulation Modelling
IS - 3
ER -