Probing structural changes during ductile fracture in metallic glasses via in situ straining inside a MeV transmission electron microscope

H. J. Chang, S. Y. Kim, W. J. Moon, Y. M. Kim, E. S. Park, D. H. Kim

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Structural changes in the vicinity of a crack during ductile fracture in various metallic glasses (MGs) with the propensity of forming shear bands were investigated by in situ straining inside a MeV transmission electron microscope (TEM). During tensile loading, a plastic deformation zone with a width of ∼100 nm and shear bands with a width of ∼15 ± 5 nm developed from crack tips of ductile fracture in MGs. In particular, crack propagation by nanovoid formation and coalescence was observed in Ti40Zr29Cu9Ni8Be14 MG with the highest compressive plasticity (∼6.7 ± 0.5%) among the tested MGs, whereas this process was hardly observable in other MGs. This difference may be attributed to atomic scale heterogeneities in Ti40Zr29Cu9Ni8Be14 MG induced by icosahedral short range orders (ISRO), which cause pronounced shear band branching and thus delay fracture process. Meanwhile, no crystallization of MGs even with ISRO or with lower Tx (crystallization onset temperature) was observed during in situ straining inside the MeV TEM and uniaxial tensile test with ribbon samples; a possible effect of normal stress and nanovoid formation during in situ straining is discussed to compare with crystallization during uniaxial compression test of the same MGs. Our study provides an insight into intrinsic toughening of MGs and thus can give useful guidelines on how to delay ductile fracture processes of MGs by tuning nanovoid formation, taking advantage of structural features through customized design of MGs.

Original languageEnglish
Pages (from-to)94-100
Number of pages7
JournalIntermetallics
Volume102
DOIs
Publication statusPublished - 2018 Nov

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea grant funded by the Korean government (Ministry of Science, ICT, and Future Planning) (NRF-2014K1A3A1A20034841 & NRF-2015M3D1A1070672) and the KIST Institutional Program (2V06030). One of the authors (E.S. Park) also benefited from the Center for Iron and Steel Research (RIAM) and Institute of Engineering Research at Seoul National University. Also, this research was supported by Korean Basic Science Institute (KBSI) for the HVEM microscope and facilities.

Publisher Copyright:
© 2018 Elsevier Ltd

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Probing structural changes during ductile fracture in metallic glasses via in situ straining inside a MeV transmission electron microscope'. Together they form a unique fingerprint.

Cite this